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Preface

This document is my report for my Summer 2025 NSERC under the supervision of
Professor Henri Darmon at McGill University. My goal with this document is to
motivate the concept of L-functions and highlight some of its applications to show the
deep connections between L-functions and Number Theory. To motivate the theory,
I will �rst deeply focus on the historical motivations, and then present some more
modern results such as the connections with elliptic curves and modular forms, or more
generally, the Langlands program.

The �rst chapter will focus on Leonhard Euler. I believe that the historical motiva-
tions for the theory of L-functions can be traced back to the work of Euler more than
any other mathematician. I will �rst present his summation formula which he used
extensively. After that, I will present his solution(s) to the Basel Problem but also the
link he made with some particular series and the prime numbers. I will then �nish
the chapter with important results that involve the Bernoulli numbers and what will
become the functional equations of some L-functions. I will add more informations
about the other chapters once I will �nish writing them.

Beside the structure of this report, there are three things I �nd very important to
keep in mind while reading this document:

� My goal is to preserve the authenticity of the results that will be presented. Hence,
I will use the original notation and the original terms as much as possible. For
example, in the �rst chapter, I will avoid using the symbol

∑
an for sums and

use a1 + a2 + a3 + . . . instead. Similarly, I will not talk about real numbers or
sets as this notion didn't exist until the very end of the 19th century. Moreover,
I will also state and prove the theorems that are presented as they were stated
and proved. Thus, the proofs that I will present will always be the original proofs
with very little modi�cations.

� The Bernoulli numbers will be mentionned for the �rst time in section 1.4 and
will probably be used a lot in the rest of the document. It is important to keep in
mind that in modern number theory books, the Bernoulli number B1 is sometimes
de�ned as +1/2 and sometimes de�ned as −1/2. In this document, I will assume
that B1 = +1/2 for very good reasons that I will expose in section 1.4.

� I made the decision of adding exercises at the end of each section because I strongly
believe that it really helps understanding the content of the section. There are
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two types of exercises: the �rst type will be exercises outlining some results from
papers that are presented in the section but that I didn't get time to present or
prove, the second type will be exercises that outline a rigorous or alternative proof
of a result that appears in the section. Some important results have non-rigorous
or false proofs, hence, the second type of exercise will help using these results in
the latter chapters without having doubts about their validity.

The prerequisites for this document would be some familiarity with Real and Complex
Analysis, Abstract Algebra (especially Group Theory) and Elementary Number Theory
(properties of prime numbers, congruences, ...). Besides these prerequisites, the document
contains appendices that should make it self-contained.

It is more than possible that I made some mistakes. Feel free to correct me or
ask me anything about the content of this document at the following email address :
samy.lahloukamal@mail.mcgill.ca.

mailto:samy.lahloukamal@mail.mcgill.ca
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Chapter 1

Euler's Marvelous Series

1.1 Euler's Summation Formula

The Calculus developed by Sir Isaac Newton (1643 - 1727) and Gottfried Wilhelm
Leibniz (1646 - 1716) at the end of the 17th century made the subject of in�nite series
very popular and useful in mathematics. Before this era, the concept of in�nite sums
was already encountered in di�erent places in the world. For example, in a treatise
written by Archimedes of Syracuse (287 BC - 212 BC) in the 3rd century BC called
Quadrature of the Parabola [19], there is a visual proof that

1

4
+

1
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+

1

64
+

1

256
+ · · · = 1

3

using embedded squares. Next, the decimal representation of numbers, which was
introduced in Europe during the 13th century, is simply an application of in�nite sums
in disguise. For example, the fact that 1/3 has the decimal expansion 0.333333 . . . can
be reinterpreted as saying that
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3
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3
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3
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+ . . .

In the 14th century, the French mathematician Nicole Oresme (1320 - 1382) showed
that the in�nite sum
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1
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1
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1

5
+ . . .

has an in�nite value in the sense that it exceeds any �nite quantity. This sum is now
called the Harmonic Series. In the same way as Archimedes, Nicole Oresme used a
geometric argument to �nd the following results:
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More informations about the work of Nicole Oresme can be found in the articleMathema-
tical Concepts and Proofs from Nicole Oresme [1].

Later, between the 14th and 15th century, members of the Kerala school of astronomy
and mathematics, in India, found representations of the sine and the cosine of an angle
as an in�nite sum. They also found an in�nite sum representation of the arctangent of
a given quantity. In modern notation, these results can be written as follows:

sin(θ) = θ − θ3

3!
+

θ5

5!
− θ7

7!
+ . . . (1.1.1)

cos(θ) = 1− θ2

2!
+

θ4

4!
− θ6

6!
+ . . . (1.1.2)

arctan(x) = x− x3

3
+

x5

5
− x7

7
+ . . . (1.1.3)

These three equations are sometimes called Madhava Series in reference to the Indian
mathematician Madhava of Sangamagrama (1340 - 1425), a member of the Kerala
school to which these results are attributed. Moreover, by plugging-in x = 1 in equation
(1.1.3), the following equation is obtained:

π

4
= 1− 1

3
+

1

5
− 1

7
+

1

9
− 1

11
+ . . . (1.1.4)

This equation was later rediscovered independently by Leibniz which is the reason why
people usually call equation (1.1.4) the Leibniz Series. More informations about this
result can be found in the article The Discovery of the Series Formula for π by Leibniz,
Gregory and Nilakantha [23]. Compared to the previously discussed results, this one
has a particular importance since it involves the constant π even though the in�nite
sum on the right hand side doesn't seem more complicated than the ones discussed
above. This result is a �rst hint that some seemingly simple in�nite sums can have
unexpected behaviors.

Finally, in 1650, the Italian mathematician Pietro Mengoli (1626 - 1686) publishes
his book Novæ quadraturæ arithmeticæ, seu de additione fractionum [21] in which he
proves various results about in�nite sums. For example, he proves that the Harmonic
Series is in�nite, and also �nds the values of

1

1 · (1 + r)
+

1

2 · (2 + r)
+

1

3 · (3 + r)
+

1

4 · (4 + r)
+ . . .

where r is any integer between 1 and 10. However, he was unable to �nd the value to
which the series

1

12
+

1

22
+

1

32
+

1

42
+ . . .

converges to (which is the case r = 0 of the previous sums). Thus, we see through these
examples that before the works of Newton and Leibniz, in�nite sums already made
their appearance in various contexts in time.
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Even though some speci�c examples of in�nite sums were already studied in the
previous centuries, they really became central in mathematics when the tools of calculus
became available. For example, with his method of �uxions, Newton rediscovered the
Madhava Series for the sine and cosine functions and was able to solve di�erential
equations. The tools of calculus gave the perfect framework for what is begining to be
called series or in�nite series.

Later in that period, in 1689, the Swiss mathematician Jakob Bernoulli (1655 -
1705) wrote his Tractatus de seriebus in�nitis, a treatise on in�nite series in which he
discusses the limiting values of various series such as geometric series, telescoping series,
the harmonic series and other types of series. For example, he derives the following
formula for geometric series:

a+ ar + ar2 + ar3 + · · · = a

1− r
, −1 < r < 1. (1.1.5)

He also studied some more speci�c examples such as

1 +
1

3
+

1

6
+

1

10
+

1

15
+

1

21
+

1

28
+ . . .

=
2

1(1 + 1)
+

2

2(2 + 1)
+

2

3(3 + 1)
+

2

4(4 + 1)
+ · · · = 2

(1.1.6)

using the fact that it is a telescoping series. As his predecessors, he gave a new proof
of the divergence of the Harmonic Series. Finally, when considering the series of the
reciprocals of the squares

1

12
+

1

22
+

1

32
+

1

42
+ . . . ,

he was able to show that it must have a �nite limiting value, i.e., that the series
converges, by using the inequality

1

n2
≤ 2

n(n+ 1)

and combining it with equation (1.1.6) to obtain

1 +
1

4
+

1

9
+

1

16
+ · · · ≤ 1 +

1

3
+

1

6
+

1

10
+ · · · = 2 < ∞.

However, he was unable to �nd the precise value to which the series converges to
and wrote in his Tractatus that "great will be our gratitude" if anyone �nds and
communicates this limiting value. This became known as the Basel Problem (since the
mathematician wrote from Basel in Switzerland) and it remained unsolved for decades.

Notice that this series converges very slowly since the individual terms don't approach
zero fast enough. This makes the problem even harder since a good strategy for �nding
the value of a series is to �nd the sum of the �rst 20 terms (for example) and guess the
limit of the series from this approximation. However, with the series of the reciprocals
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of the squares, taking the sum of the �rst 200 terms gives an approximation which is
only correct for one decimal.

The �rst mathematician to make some signi�cant progress on the Basel Problem is
a young Swiss mathematician who would soon become the most proli�c mathematician
of all time. This mathematician is obviously the great Leonhard Euler.

Enter Euler

Born in the town of Basel on the 15th of April in 1707, Leonhard Euler is the son of
the pastor Paul Euler. From a young age, Leonhard received schooling in mathematics
from di�erent persons. First, from his father who had taken courses in mathematics
from Jakob Bernoulli at the University of Basel. Then, when attending the University
of Basel in 1720 at the age of 13, from Johann Bernoulli (1667 - 1748), Jakob Bernoulli's
younger brother. Johann Bernoulli had a great in�uence on Euler for three reasons,
he was one of the top mathematician of his time, they met every saturday afternoon
to discuss about mathematics, and because he helped Euler get his father's consent to
become a mathematician instead of a pastor. In 1727, Euler joined Daniel Bernoulli,
Johann Bernoulli's son, to take a position in the department of mathematics at the
Imperial Russian Academy of Sciences in Saint Petersburg. It is here that most of the
papers presented in this chapter will be written.

Euler's �rst contribution to the Basel Problem can be found in his article De
summatione innumerabilium progressionum [7], written in 1731 and published in 1738.
In this article, using many integral tricks and algebraic manipulations, Euler was able
to obtain the formula

1

12
+

1

22
+

1

32
+ · · · =

(
1

20 · 12
+

1

21 · 22
+

1

22 · 32
+

1

23 · 42
+ . . .

)
+ (ln 2)2 (1.1.7)

which relates the series of the reciprocals of the squares to a series which converges
much faster to which is added a constant term that can be computed very precisely.
With only 20 terms of the right hand side series, Euler is able to obtain the following
approximation:

1 +
1

4
+

1

9
+

1

16
+

1

25
+ · · · = 1.644934

He notices himself that such an approximation can only be obtained by adding more
than a thousand terms of the series on the left hand side. Using computers, it turns
out that such an approximation would require to sum more than 15 millions terms of
the original series, which makes this result already very remarkable. Again, this shows
how slowly the original series converges.

Three years later, in the article Methodus universalis serierum convergentium sum-
mas quam proxime inveniendi [11] written in June 1735 and published in 1741, Euler
found another way of approximating the sum of the reciprocals of the squares. He
presented a general geometric method for approximating series using integrals. At the
end of the paper, he applied his method to the series of the reciprocals of the square.
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1 2 3 4 5

y =
1

x2

Figure 1.1: Visual interpretation of
1 + 1

22
+ 1

32
+ 1

42
+ . . .

He considered Figure 1.1 in which the blue and red area represents the value of the
sum of the reciprocals of the squares. We can see that this sum is greater than the
blue area under the curve y = 1

x2 between x = 1 and x = ∞. But Euler's goal was to
approximate the red area above the curve. Using some calculus and geometry, he was
able to derive the following approximation of the total shaded area:

1 +
1

4
+

1

9
+

1

16
+

1

25
+ · · · = 1.644920

which is only true for the �rst four decimals. It seems like this method is worst than
the previous one since it only gives an approximation true for the �rst four decimals.
However, Euler was on track to develop a new very powerful method.

The Summation Formula

As for the previous method, Euler's goal was to approximate the di�erence between a
series and the integral of the general term of the series. In his paper Methodus generalis
summandi progressiones [8], written in 1732 and published in 1738, Euler mentions
without proof such a formula that links a series to its corresponding integral. He then
wrote another article called Inventio summae cuiusque seriei ex dato termino generali
[10], written in October 1735 and published in 1741, to go over the proof of his formula
and apply it to approximate some series. Let's dive into this last paper to understand
his formula.

The paper starts with an important preliminary result. Take a function y which
can be expanded as follows:

y(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + . . . ,
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then for any α and by the Binomial Theorem:

y(x+ α) = a0

+ (a1x + a1α)

+
(
a2x

2 + 2a2xα + a2α
2
)

+
(
a3x

3 + 3a3x
2α + 3a3xα

2 + a3α
3
)

+
(
a4x

4 + 4a4x
3α + 6a4x

2α2 + 4a4xα
3 + a4α

4
)

+ . . .

Now, if we sum the right hand sum column by column, we obtain

y(x+ α) = (a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + . . . )

+
α

1
(a1 + 2a2x+ 3a3x

2 + 4a4x
3 + . . . )

+
α2

1 · 2
(2a2 + 3 · 2a3x+ 4 · 3a4x2 + . . . )

+
α3

1 · 2 · 3
(3 · 2a3 + 4 · 3 · 2a4x+ . . . )

+ . . .

Finally, we can recognize that the expressions inside the prentheses are simply the
successive derivatives of y. It follows that

y(x+ α) = y(x) +
αdy

1 · dx
+

α2d2y

1 · 2 · dx2
+

α3d3y

1 · 2 · 3 · dx3
+

α4d4y

1 · 2 · 3 · 4 · dx4
+ . . . (1.1.8)

Euler attributes this result to the mathematician Brook Taylor (1685 - 1731) who is now
known for his work on Taylor Series. After obtaining this formula, Euler introduced
the main problem of the article. Suppose we are given a function f(x) and we de�ne
the new function

S(x) = f(1) + f(2) + f(3) + · · ·+ f(x), (1.1.9)

How can we �nd a simpler expression of the function S(x) ? For example, if f(x) = x,
then S(x) is simply x(x+ 1)/2. First, he noticed that by de�nition of S(x), we have

S(x− 1) = S(x)− f(x)

and so
f(x) = S(x)− S(x− 1). (1.1.10)

Moreover, using equation (1.1.8) with y = S and α = −1, he obtained

S(x− 1) = S(x)− dS

1 · dx
+

d2S

1 · 2 · dx2
− d3S

1 · 2 · 3 · dx3
+

d4S

1 · 2 · 3 · 4 · dx4
+ . . .

Even if S(x) was de�ned for positive integers only, Euler assumed that it could be
treated as an in�nitely di�erentiable function. This can be explained by the fact that
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our goal is to �nd a nice function that interpolates the partial sums of f(x). Hence, we
are not de�ning S(x) as the partial sums of f(x), instead, we are trying to deduce the
formula of such a function S(x) if it exists. After this last equation, he substituted it
into equation (1.1.10) to get

f(x) =
dS

1 · dx
− d2S

1 · 2 · dx2
+

d3S

1 · 2 · 3 · dx3
− d4S

1 · 2 · 3 · 4 · dx4
+ . . . (1.1.11)

However, Euler notices that the goal is to �nd a new expression of S(x), not of f(x).
The last equation expresses f(x) in terms of S ′(x) and its derivative. Hence, his next
step is to invert this equation, i.e., to write S ′(x) in terms of f(x) and its derivatives.
To do so, he assumes that

dS

dx
= α0f(x) + α1

df

dx
+ α2

d2f

dx2
+ α3

d3f

dx3
+ α4

d4f

dx4
+ . . . (1.1.12)

and so now the goal is to �nd the coe�cients α0, α1, α2, α3, α4, . . . . To determine these
coe�cients, Euler di�erentiated both sides of equation (1.1.12) to obtain:

dS

dx
= α0f(x) + α1

df

dx
+ α2

d2f

dx2
+ α3

d3f

dx3
+ α4

d4f

dx4
+ . . .

d2S

dx2
= α0

df

dx
+ α1

d2f

dx2
+ α2

d3f

dx3
+ α3

d4f

dx4
+ . . .

d3S

dx3
= α0

d2f

dx2
+ α1

d3f

dx3
+ α2

d4f

dx4
+ . . .

d4S

dx4
= α0

d3f

dx3
+ α1

d4f

dx4
+ . . .

d5S

dx5
= α0

d4f

dx4
+ . . .

He then substituted these equations into equation (1.1.11) to get:

f(x) =
1

1

(
α0f(x) + α1

df

dx
+ α2

d2f

dx2
+ α3

d3f

dx3
+ α4

d4f

dx4
+ . . .

)
− 1

2

(
α0

df

dx
+ α1

d2f

dx2
+ α2

d3f

dx3
+ α3

d4f

dx4
+ . . .

)
+

1

6

(
α0

d2f

dx2
+ α1

d3f

dx3
+ α2

d4f

dx4
+ . . .

)
− 1

24

(
α0

d3f

dx3
+ α1

d4f

dx4
+ . . .

)
+

1

120

(
α0

d4f

dx4
+ . . .

)
− . . .
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Next, by expanding the right hand side and grouping the terms by their respective
derivatives of f(x), Euler obtained the following equation:

f(x) = α0f(x)

+
(
α1 −

α0

2

) df

dx

+
(
α2 −

α1

2
+

α0

6

) d2f

dx2

+
(
α3 −

α2

2
+

α1

6
− α0

24

) d3f

dx3

+
(
α4 −

α3

2
+

α2

6
− α1

24
+

α0

120

) d4f

dx4

+ . . .

Finally, Euler deduced from this equation that α0 must be 1 and that all the other
coe�cients in front of the derivatives of f ′(x) must be zero. It follows that

α0 = 1

α1 =
α0

2

α2 =
α1

2
− α0

6

α3 =
α2

2
− α1

6
+

α0

24

α4 =
α3

2
− α2

6
+

α1

24
− α0

120
etc . . .

which implies that each αn can be determined by its predecessors. Euler used these
formulas to compute the �rst αn's:

α0 = 1 α1 =
1

2
α2 =

1

12
α3 = 0 α4 = − 1

720
α5 = 0 α6 =

1

30240

from which he �nally obtained

S ′(x) = f(x) +
df

2 · dx
+

d2f

12 · dx2
− d4f

720 · dx4
+

d6f

30240 · dx6
− . . . (1.1.13)

Therefore, the last step is simply to integrate this equation to obtain a new expression
for S(x):

S(x) =

∫
f(x)dx+

f(x)

2
+

df

12 · dx
− d3f

720 · dx3
+

d5f

30240 · dx5
− · · ·+ C (1.1.14)

where C is the constant of integration that makes S(0) = 0, and where the coe�cient
in front of the nth derivative of f(x) is αn+1. From the condition that S(0) = 0 we
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have that our integration constant is

C = −
[∫

f(x)dx+
f(x)

2
+

df

12 · dx
− d3f

720 · dx3
+

d5f

30240 · dx5
− . . .

]
x=0

(1.1.15)

since adding this constant on the right hand side of equation (1.1.14) and evaluating
the expression on the right at x = 0 would give S(0) = 0.

This is the now famous Euler Summation Formula. There is a lot to say about this
derivation. First, we can clearly see how low were the standards in terms of rigor at
that time. Such a proof would never be accepted today. However, since Euler, other
proofs were provided for this formula so we can rest our mind and be sure of its validity.
The usefulness of this formula may not be obvious for the moment since it seems like
Euler have made the problem harder. Our �rst expression for S(x) was a simple �nite
sum involving no derivatives. This new expression of S(x) is an in�nite sum involving
derivatives of f(x) of arbitrarily high orders. At least it is clear now that S(x) is de�ned
over way more numbers than just the positive integers, and that it is di�erentiable. But
to really understand how powerful this formula is, let's see it in action.

The Formula in Action

For his �rst example, Euler took the function f(x) = x. Notice that with this function,
the constant C is simply equal to −1/12 since the only non-zero term in the formula
for C is the one involving the �rst derivative of f(x). Thus, we get

S(x) =

∫
xdx+

x

2
+

1

12
− 0 + 0− · · ·+ C =

x(x+ 1)

2

which is indeed the correct formula. Similarly, with f(x) = x2, he obtained

S(x) =
x3

3
+

x2

2
+

x

6
=

x(x+ 1)(2x+ 1)

6

which is, again, the correct formula. Since taking the successive derivatives of the
function f(x) = xm is an easy task, we can see how Euler's formula can be used to
recover all the formulas for the sum of the �rst n powers of m. And this is exactly what
Euler did, from his formula, he deduced the formula for the speci�c case f(x) = xm and
from that, he deduced the equivalent of the two previous equations (which were the
case m = 1 and m = 2) for the cases m = 3, 4, 5, ..., 15, 16. In Figure 1.2, the symbole∫
xm denotes the sum 1m + 2m + 3m + · · ·+ xm.
After these examples, Euler �nished his paper by returning on the original problem

of approximating the sum of the reciprocals of the squares. Euler let f(x) = 1
x2 and

noticed that he could not apply the formula directly since computing the constant C
would require dividing by 0. Hence, Euler split the sum as follows:

1 +
1

4
+

1

9
+

1

16
+

1

25
+ · · · =

(
1 +

1

4
+ · · ·+ 1

100

)
+

(
1

121
+

1

144
+

1

169
+ . . .

)
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Figure 1.2: Extract from Euler's paper

He computed by hand the �rst ten terms of the series to get

1 +
1

4
+ · · ·+ 1

81
+

1

100
= 1.549767731166540 (1.1.16)

and then used his summation formula to approximate the remaining terms:

S(x) =
1

112
+

1

122
+

1

132
+ · · ·+ 1

x2
. (1.1.17)

In the previous equation, the initial condition now becomes S(10) = 0 instead of S(0) =
0 because the �rst term has index x = 11. Therefore, the constant term is

C = −
∫

f(x)dx

∣∣∣∣
x=10

− f(x)

2

∣∣∣∣
x=10

− df

12 · dx

∣∣∣∣
x=10

+
d3f

720 · dx3

∣∣∣∣
x=10

− d5f

30240 · dx5

∣∣∣∣
x=10

+ . . .

(1.1.18)
Euler then computed the �rst successive derivatives of f(x) to obtain∫

f(x)dx = −1

x

df

dx
= − 2

x3

d3f

dx3
= −2 · 3 · 4

x5

d5f

dx5
= −2 · 3 · 4 · 5 · 6

x7

and so plugging this into equation (1.1.18) gives

C =
1

10
− 1

200
+

1

6000
− 1

3000000
+

1

420000000
− 1

30000000000
+ . . .

which converges really fast, and hence, can be approximated really well. Therefore,
using his summation formula, he obtained

1

112
+

1

122
+ · · ·+ 1

x2
=

(
−1

x
+

1

2x2
− 1

6x3
+

1

30x5
− . . .

)
+ C (1.1.19)
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He then combined equations (1.1.16) and (1.1.19) to get

1 +
1

4
+ · · ·+ 1

x2
= 1.549767731166540 + C +

(
−1

x
+

1

2x2
− 1

6x3
+

1

30x5
− . . .

)
Finally, letting x go to in�nity gives

1 +
1

4
+

1

9
+

1

16
+ · · · = 1.64493406684822643647 (1.1.20)

which is an apprixomation with twenty correct decimals! It was mentioned earlier in
this section that to obtain an approximation correct to six decimals, it would require
taking the sum of more than the �rst 15 million terms of the original series. Similarly,
to get an approximation with 20 correct decimals, it is required to sum more than the
�rst 1020 terms of the original series. The last two examples he provided in his paper
are similar approximations of the sum of the inverse of the cubes and the sum of the
inverse of the biquadrates:

1 +
1

8
+

1

27
+

1

64
+ . . . = 1.202056903159594 (1.1.21)

1 +
1

16
+

1

81
+

1

256
+ . . . = 1.0823232337110824 (1.1.22)

With this single summation formula and its countless applications, Euler clearly
stands as one of the most ingenious mathematician of his time. However, you may
guess that this is only the begining. Euler went further than that. It turns out that
only two months after writting his paper Inventio summae... which we just presented,
Euler solved the Basel Problem. Not only he recognized the exact value of the number he
approximated in equation (1.1.20), but he also found a way to prove it. The next section
will be focused on Euler's paper which contains his solution to the Basel Problem.

The Euler Summation Formula which was introduced in this section will also appear
in the next sections. Euler used it a lot throughout his mathematical career because it
turns out that there is still a lot to say about this formula, especially concerning the
coe�cients α0, α1, α2, . . . which will have a great importance later.

Exercises

Exercise 1.1.1. In this exercise, the sequence Hn =
∑n

k=1
1
k
denotes the sequence of

partial sums of the Harmonic Series. In the article De summatione innumerabilium
progressionum written in 1731, Euler interpolated the sequence Hn using the function

H(x) =

∫ 1

0

1− tx

1− t
dt.

(a) Prove that H(n) = Hn for all n ≥ 1.

(b) Find the value of H(1/2).
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(c) Prove that H(x+ 1) = H(x) + 1
x+1

for all x > 0.

(d) Deduce a general formula for H(n+ 1
2
).

Exercise 1.1.2. In the same paper as the one mentioned in the previous exercise, Euler
proves that

1

12
+

1

22
+

1

32
+

1

42
+ · · · =

(
1

20 · 12
+

1

21 · 22
+

1

22 · 32
+

1

23 · 42
+ . . .

)
+ (ln 2)2

as a corollary of a more general method. To make Euler's proof easier to understand,
this exercise outlines Euler's argument applied to the speci�c case of the sum of the
reciprocals of the squares. This version of Euler's proof comes from the article Euler
and the Zeta Function written by Raymond Ayoub.

(a) Show that

− ln(1− x)

x
= 1 +

x

2
+

x2

3
+

x3

4
+

x4

5
+ . . .

(b) Deduce the following new expression of the sum of the reciprocals of the squares

1 +
1

4
+

1

9
+

1

25
+ · · · = −

∫ 1

0

ln(1− x)

x
dx.

(c) Split the integral on right hand side at x = 1
2
and de�ne

I1 = −
∫ 1

2

0

ln(1− x)

x
dx I2 = −

∫ 1

1
2

ln(1− x)

x
dx.

so that the sum of the reciprocals of the squares is equal to I1 + I2. Use part (a)
to �nd

I1 =
1

21 · 12
+

1

22 · 22
+

1

23 · 32
+

1

24 · 42
+ . . .

(d) In the integral I2, make the change of variable u = 1−x and expand the resulting
denominator in a power series. From this, make an integration by parts term-by-
term to obtain

I2 = I1 + (ln 2)2.

(e) Deduce the desired formula from part (c) and part (d).

Exercise 1.1.3. Use Taylor's Formula (equation (1.1.8)) to derive the following identities:

(a) ea+b = eaeb

(b) sin(a+ b) = sin(a) cos(b) + cos(a) sin(b)

(c) cos(a+ b) = cos(a) cos(b)− sin(a) sin(b)
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Exercise 1.1.4. Use Euler's Summation Formula (equation (1.1.14)) to �nd the formula
for the sum of the �rst n cubes. By induction, prove that your formula is correct for
all positive integers.

Exercise 1.1.5. Use Euler's Summation Formula (equation (1.1.14)) to �nd the general
formula for the sum of the n �rst powers of m.

Exercise 1.1.6. In the 1735 paper Inventio summae ..., we saw how Euler applied his
summation formula to various sums and series. One of the example he studied in his
paper is the case f(x) = 1

x
. Read how Euler approximated the sum of the reciprocals of

the squares and follows these exact same steps to conclude that for large enough values
of x, we have

1 +
1

2
+

1

3
+ · · ·+ 1

x
= ln(x) + c

where c is a constant. Find a way of approximating this constant c that follows his
method for approximating the sum of the reciprocals of the squares.
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1.2 Solving the Basel Problem

We ended last section with Euler's astonishing approximation of the sum of the recipro-
cals of the squares. However, an approximation is still an approximation, the Basel
Problem is still far from being solved. Or is it ? As it was said at the end of the
previous section, from his approximation, Euler was �nally able to see the light and
understand the true nature of the sum of the reciprocals of the squares. But what could
he notice from these 20 mysterious decimals ?

At that time, the values of both the Leibniz Series and the Alternating Harmonic
Series were known:

1− 1

3
+

1

5
− 1

7
+

1

9
− 1

11
+ . . . =

π

4
(1.2.1)

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ . . . = ln 2 (1.2.2)

Thus, by squaring both sides of both equations could imply that the sum of the
reciprocals of the squares can be written in terms of π2, (ln 2)2, or both. Moreover, as we
saw in the previous section, Euler already managed to write the sum of the reciprocals
of the squares in terms of (ln 2)2 in equation (1.1.7). These results narrow our possible
guesses a lot. This is probably what Euler had in mind because after approximating the
desired sum up to 20 decimals, he quickly recognized this value to be... π2/6 ! But this
is not even the most surprising part, there is still an important question that remains
unanswered: why would the sum of the reciprocals of the squares converge to π2/6 ?

Euler came up and wrote his (�rst) proof of this result in December 1735 in the
paper De summis serierum reciprocarum [4] published in 1740. The goal of this section
is to understand Euler's proof in details. Let's begin.

The Proof

First, for a �xed y between −1 and 1, he considered the equation y = sin(s) where
s is a variable. Using the series expansion of the sine function, this equation can be
rewritten as

y = s− s3

1 · 2 · 3
+

s5

1 · 2 · 3 · 4 · 5
− . . . (1.2.3)

Now, Euler noticed that if y is supposed to be non-zero, then dividing by both sides by
y and putting all the terms on one side of the equation leads to the key equation

0 = 1− s

y
+

s3

1 · 2 · 3 · y
− s5

1 · 2 · 3 · 4 · 5 · y
+ . . . (1.2.4)

Next, he viewed this equation as an in�nite-degree polynomial equation in s, and hence
treated the right hand side of equation (1.2.4) as a regular polynomial. Recall that
given a polynomial P (s) of �nite degree n with roots a1, ..., an and such that P (0) = 1,



CHAPTER 1. EULER'S MARVELOUS SERIES 15

then we can write P (s) as

P (s) =

(
1− s

a1

)(
1− s

a2

)
. . .

(
1− s

an

)
. (1.2.5)

This comes from the fact that the expression on the right hand side of equation (1.2.5)
is a polynomial of degree n that has the same roots as P (s) and that has the same
value at 0. Since both polynomial coincide on n+ 1 points, then they must be strictly
equal. Thus, if we denote by A, B, C, D, ... the roots of equation (1.2.4), then Euler
extended the previous principle to the in�nite case to obtain the following important
equation:

1− s

y
+

s3

1 · 2 · 3 · y
− s5

1 · · · 5 · y
+ · · · =

(
1− s

A

)(
1− s

B

)(
1− s

C

)
. . . (1.2.6)

Finally, he de�ned A to be the least positive root of the equation y = sin(s), and
observed that the roots of the equation are precisely the sequence A, π − A, −π − A,
2π + A, −2π + A, 3π − A, −3π − A, ... which implies that the previous equation can
be rewritten as

1− s

y
+

s3

1 · 2 · 3 · y
− s5

1 · · · 5 · y
+ . . .

=
(
1− s

A

)(
1− s

π − A

)(
1− s

−π − A

)(
1− s

2π + A

)(
1− s

−2π + A

)
. . .

(1.2.7)

From this equation, Euler observed that by expanding the in�nite product on the right
hand side, the coe�cient in front of s on the left hand side is equal to the sum of the
terms of the sequence − 1

A
, − 1

π−A
, ..., the coe�cient in front of s2 on the left hand side is

equal to the sum of the factors of two terms in the same sequence, and more generally,
that the coe�cient in front of sn on the left hand side is equal to the sum of the factors
of n elements in the sequence − 1

A
, − 1

π−A
, ... It follows that

1

y
=

1

A
+

1

π − A
+

1

−π − A
+

1

2π + A
+

1

−2π + A
+ . . . (1.2.8)

With this equation in hand, Euler considered the case where y = 1, from which he
concluded that the least positive root of the equation sin(s) = 1 is A = π/2. Thus, by
plugging-in y = 1 and A = π/2 in equation (1.2.8), he obtained

1 =
2

π
+

2

π
− 2

3π
− 2

3π
+

2

5π
+

2

5π
+ . . . (1.2.9)

which is equivalent to
π

4
= 1− 1

3
+

1

5
− 1

7
+

1

9
− . . . (1.2.10)
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Euler knew that his method was not perfectly rigorous but this �rst result was a way
for him to con�rm that his method works since it recovers some known formulas. Next,
Euler recalled one last crucial fact about series. Given a series α = a+ b+ c+ d+ . . . ,
if we let β = ab+ ac+ ad+ · · ·+ bc+ bd+ · · ·+ cd+ . . . be the series of factors from
two terms of the sequence a, b, c, d, ..., then

a2 + b2 + c2 + d2 + · · · = α2 − 2β. (1.2.11)

If we apply this formula to the sequence − 1
π/2

, − 1
π−(π/2)

, ..., then by a previous result
and by a previous observation, Euler concluded that α = −1 and β is simply equal
to the coe�cient in front of s2 in the left hand side of equation (1.2.6) and so β = 0.
Therefore, we obtain(

− 2

π

)2

+

(
− 2

π

)2

+

(
2

3π

)2

+

(
2

3π

)2

+ · · · = (−1)(−1)− 2 · 0 = 1

which is equivalent to
1

12
+

1

32
+

1

52
+ · · · = π2

8
. (1.2.12)

This equation is very close to the series we are interested in, only the even terms are
missing. Euler's last trick was to notice that if we let

S =
1

12
+

1

22
+

1

32
+

1

42
+ . . . ,

then

S − π2

8
=

(
1

12
+

1

22
+

1

32
+ . . .

)
−
(

1

12
+

1

32
+

1

52
+ . . .

)
=

1

22
+

1

42
+

1

62
+ . . .

=
1

22

(
1

12
+

1

22
+

1

32
+ . . .

)
=

1

4
S

Thus, solving this equation for S gives us

S =

(
1− 1

4

)−1
π2

8
=

4

3

π2

8

and so

1 +
1

4
+

1

9
+

1

16
+ · · · = π2

6
(1.2.13)

There is a lot to say about this proof since it is as creative and ingenious as
unrigorous. First, since the publication of this proof, other proofs were published and
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some are as rigorous as one can be. Moreover, most of the formulas used in the previous
proof turns out to be true even if Euler's justi�cations may not be really convincing since
formulas that are true in the �nite case might not directly extend to the in�nite case.
But Euler didn't stop there at all, this was only the begining of Euler's investigation of
this curious series.

More Results

In the same article, Euler considered a generalization of equation (1.2.11). If we consider
again the series a+ b+ c+ d+ . . . , then let Pn be equal to the series where each term
is taken to the nth power, and then let αn be equal to the series of factors of n terms
of the original series, then Euler deduced the following relations:

P1 = α1

P2 = P1α1 − 2α2

P3 = P2α1 − P1α2 + 3α3

P4 = P3α1 − P2α2 + P1α3 − 4α4

P5 = P4α1 − P3α2 + P2α3 − P1α4 + 5α5

etc . . .

Notice that the �rst relation is trivial and the second relation is the same equation
(1.2.11). As before, he recalled that αn is simply equal to the coe�cient in front of sn

on the left hand side of equation (1.2.6). From this, Euler applied the third relation to
the sequence − 1

π/2
, − 1

π−(π/2)
, .... From the previous observations and results, we have

P1 = α1 = −1, P2 = 1, α2 = 0 and α3 = 1/6. Thus, the third relation applied to these
values gives us(

− 2

π

)3

+

(
− 2

π

)3

+

(
2

3π

)3

+

(
2

3π

)3

+ · · · = P3 = −1

2

which is equivalent to
1

13
− 1

33
+

1

53
− 1

73
+ · · · = π3

32
(1.2.14)

Next, in the same way, Euler applied the relations for P4, P5, P6, ... to obtain the
following series:

1

14
+

1

34
+

1

54
+

1

74
+ · · · = π4

96
. (1.2.15)

1

15
− 1

35
+

1

55
− 1

75
+ · · · = 5π5

1536
(1.2.16)

1

16
+

1

36
+

1

56
+

1

76
+ · · · = π6

960
. (1.2.17)

1

17
− 1

37
+

1

57
− 1

77
+ · · · = 61π7

184320
(1.2.18)
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1

18
+

1

38
+

1

58
+

1

78
+ · · · = 17π8

161280
. (1.2.19)

etc...

There are a few things to observe from this enumeration. First, it is easy to convince
ourselves that we can repeat this process such that for all natural numbers n, we obtain
the exact value of the series

1

1n
+

(−1)n

3n
+

1

5n
+

(−1)n

7n
+ . . . (1.2.20)

Moreover, it seems like the exact value will always be a rational multiple of πn (the
reader is encouraged to try to prove it). From these exact values, Euler focused on
�nding the exact values of series of the form

1

1n
+

1

2n
+

1

3n
+

1

4n
+ . . .

as he did for the special case n = 2. It turns out that when n is an even number,
we can easily deduce the value of the series of the reciprocals of the powers of n using
the series of the reciprocals of the odd numbers to the power of n with the exact same
technique as the case n = 2. This comes from the fact that if we let n = 2k be an
arbitrary positive even number,

S =
1

1n
+

1

2n
+

1

3n
+

1

4n
+ . . . ,

and

T =
1

12k
+

(−1)2k

32k
+

1

52k
+

(−1)2k

72k
+ · · · = 1

1n
+

1

3n
+

1

5n
+

1

7n
+ . . . ,

then

S − T =
1

2n
+

1

4n
+

1

6n
+ · · · = 1

2n
S

and so

S =
2n

2n − 1
T

which means that if know T , we automatically know S. From this, Euler obtained

1

12
+

1

22
+

1

32
+

1

42
+

1

52
+ . . . =

π2

6
(1.2.21)

1

14
+

1

24
+

1

34
+

1

44
+

1

54
+ . . . =

π4

90
(1.2.22)

1

16
+

1

26
+

1

36
+

1

46
+

1

56
+ . . . =

π6

945
(1.2.23)

1

18
+

1

28
+

1

38
+

1

48
+

1

58
+ . . . =

π8

9450
(1.2.24)

1

110
+

1

210
+

1

310
+

1

410
+

1

510
+ . . . =

π10

93555
(1.2.25)
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and admitted that as the powers become larger, the work needed to compute these
exact values becomes longer. However, when n is odd, the fact that the series (1.2.20)
is alternating makes it impossible to use the same technique we used for n = 2. For
example, Euler didn't manage to �nd a way to deduce the exact value of the series

1

13
+

1

23
+

1

33
+

1

43
+

1

53
+ . . .

or any other series of this form where the power is a positive odd number. None of the
techniques and ideas he used to solve the Basel Problem work for the odd powers.

What about y ̸= 1 ?

These last results clearly show that Euler did way more than simply solving the Basel
Problem. He generalized the problem and partially solved the general version. However,
we are talking about Euler so it should not be surprising that he didn't stop there in
this single article. If we look back to the key equation (1.2.8), we can notice that for
the moment, we only studied the case where y = 1. What if we plug-in other non-zero
values of y between −1 and 1 ? Euler �xed y =

√
2/2, which implies that the least

A > 0 such that sin(A) = y is A = π/4. Thus, equation (1.2.8) gives us

2√
2
=

4

π
+

4

3π
− 4

5π
− 4

7π
+

4

9π
+

4

11π
− 4

13π
− 4

15π
+ . . .

which is equivalent to

π

2
√
2
=

1

1
+

1

3
− 1

5
− 1

7
+

1

9
+

1

11
− 1

13
− 1

15
+ . . . (1.2.26)

Euler observed that this result was already published by Newton. As he did for y = 1,
from the series he obtained, he derived a second time that the series of the reciprocals of
the squares is equal to π2/6. Next, Euler �xed y =

√
3/2, and so in this case, A = π/3.

Thus, equation (1.2.8) gives us

2√
3
=

3

π
+

3

2π
− 3

4π
− 3

5π
+

3

7π
+

3

8π
− . . .

which is equivalent to

2π

3
√
3
=

1

1
+

1

2
− 1

4
− 1

5
+

1

7
+

1

8
− . . . (1.2.27)

Again, Euler derived from this series that the series of the reciprocals of the squares
is equal to π2/6. Finally, Euler considered the case y = 0. We cannot apply this case
to equation (1.2.4) since we divide by y but we can plug-in y = 0 into equation (1.2.3)
and divide by zero on both sides to get

0 = 1− s2

1 · 2 · 3
+

s4

1 · · · 5
− . . . (1.2.28)
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which is equivalent to the equation

sin(s)

s
= 0 (1.2.29)

Euler noticed that in this case, we can again apply our factorization into an in�nite
product since the constant coe�cient of the in�nite polynomial on the right hand side
of equation (1.2.28) has a constant coe�cient of 1. The roots of equation (1.2.28)
are precisely the roots of equation (1.2.29), and so the roots are the non-zero integer
multiples of π. Thus, we obtain

1− s2

1 · 2 · 3
+

s4

1 · · · 5
− · · · =

(
1− s

π

)(
1 +

s

π

)(
1− s

2π

)(
1 +

s

2π

)
. . .

which Euler rewrote as

1− s2

1 · 2 · 3
+

s4

1 · · · 5
− · · · =

(
1− s2

π2

)(
1− s2

22π2

)(
1− s2

32π2

)
. . . (1.2.30)

From this last equation, Euler noticed that by expanding the in�nite product on the
right hand side and comparing the coe�cients in front of s2 on both sides of the equation,
he would obtain

−1

6
= − 1

π2
− 1

22π2
− 1

32π2
− 1

42π2
− . . .

which is again equivalent to

1

12
+

1

22
+

1

32
+

1

42
+ · · · = π2

6
.

Therefore, in total, Euler derived four times his now famous identity in this single paper.
This �nishes our study of Euler's 1735 paper on in�nite series.

After presenting and publishing his paper, Euler became very popular in the mathe-
matical community and even became the leading mathematician of his period. The
solution to the Basel Problem is still one of the most unexpected equation in mathematics
for no one would expect the constant π, nor its square, to appear in this context. We
can clearly see in his article that by solving the Basel Problem, instead of moving on
to something else, Euler opened the door to a whole new family of series with countless
surprising properties. This article is only the begining of Euler's very deep investigation
of the series of the form

1

1n
+

1

2n
+

1

3n
+

1

4n
+ . . .

and this investigation will lead to some major results and open problems in mathematics
that will have a great impact on the centuries following Euler's work. The goal of the
next sections will be to follow Euler's exploration of this new world he discovered.
We will see the links that Euler created between these series and other well known
mathematical objects.
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Exercises

Exercise 1.2.1. In the paper presented in this section, Euler plugged-in the values
y = 1,

√
2
2
,
√
3
2

into the key equation (1.2.4) to rederive the Leibniz Series as well as
equations (1.2.26) and (1.2.27). What series would he obtain with y = 1

2
?

Exercise 1.2.2. To prove his famous identity (1.2.13), Euler started by considering the
equation y = sin(s), �xed di�erent values of y, and for each value of y transformed the
equation as an equality between a series and an in�nite product. What would you get
if you follow this method but starting with the equation y = cos(s) and �xing y = 0 ?

Exercise 1.2.3. In 1741, Euler wrote the article Démonstration de la somme de cette
suite 1 + 1/4 + 1/9 + 1/16 + ... [12] in which he presents a completely di�erent
proof of his famous identity. This exercise outlines William Dunham's reformulation
of Euler's proof from 1741 which can be found in Chapter 3 of his book Euler : The
Master of Us All.

(a) Prove the identity
1

2
(sin−1 x)2 =

∫ x

0

sin−1 t√
1− t2

dt

using a change of variable.

(b) Using Newton's Generalized Binomial Theorem, �nd the Taylor series of the
function sin−1 t.

(c) Prove the relation ∫ 1

0

tn+2

√
1− t2

dt =
n+ 1

n+ 2

∫ 1

0

tn√
1− t2

dt

for all integers n ≥ 1.

(d) Conclude that
∞∑
n=1

1

(2n− 1)2
=

π2

8

by evaluating
∫ 1

0
sin−1 t√
1−t2

dt in two di�erent ways.

(e) Deduce that the sum of the reciprocals of the squares is equal to π2/6.
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1.3 Series and Products of Prime Numbers

In this section, we explore the link that Euler established between two seemingly
very unrelated �elds of mathematics: the series he studied in his 1735 paper (which
is presented in the previous section) and number theory. Such a correspondence is
unexpected since on one hand, the study of series is purely analytic, and hence, deals
with continuous objects, while on the other hand, the theory of numbers is purely
discrete.

This link was established in the paper Variae observationes circa series in�nitas [6]
written in 1737 and published in 1744. This paper contains a very large number of
theorems about series and in�nite products. More speci�cally, the goal of this paper
is to study series where the terms are not generated by a formula but with a more
intricate rule, as we will see later. Even though there is a lot of very interesting results
and theorems, we will only be interested in a few.

Di�erent Kinds of In�nite

However, before diving into the paper, we �rst need to understand the distinction
Euler made between "∞" and "ln(∞)". Using our knowledge of limits, it would be
tempting to understand ln(∞) as the limit of ln(n) as n goes to in�nity, and hence
obtain ln(∞) = ∞. However, Euler treated these two values di�erently. For Euler,
these symbols contain an additional information about the way a series (or any sequence
in general) approaches its limit. If a series is equal to ln(∞), then it diverges to in�nity
very slowly, as slowly as the logarithm function diverges to in�nity. Hence, this notation
indicates the rate at which a function diverges. He calls the symbol ∞ the absolute
in�nite, and it is to be viewed as the rate of divergence of a sequence which diverges
to in�nity at the same rate as its input. For example, Euler showed in his paper
De Progressionibus Harmonicis Observationes [9], written in 1734, that the Harmonic
Series is equal to ln(∞). To do so, he recalled the polynomial expansion of the logarithm
function to obtain the equation

ln

(
1 +

1

n

)
=

1

n
− 1

2n2
+

1

3n3
− 1

4n4
+ . . .

which implies that applying this formula for n = 1, ..., k and isolating for the 1
n
term
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gives the following equations:

1

1
= ln

(
2

1

)
+

1

2 · 12
− 1

3 · 12
+

1

4 · 12
− 1

5 · 12
+ . . .

1

2
= ln

(
3

2

)
+

1

2 · 22
− 1

3 · 22
+

1

4 · 22
− 1

5 · 22
+ . . .

...
...

...
...

...
...

1

k
= ln

(
k + 1

k

)
+

1

2 · k2
− 1

3 · k2
+

1

4 · k2
− 1

5 · k2
+ . . .

Next, by taking the sum on both sides column by column, and using the multiplicative
property of the logarithm, Euler obtained

1 +
1

2
+

1

3
+ · · ·+ 1

k
= ln(k + 1) +

1

2

(
1 +

1

22
+ · · ·+ 1

k2

)
− 1

3

(
1 +

1

23
+ · · ·+ 1

k3

)
+

1

4

(
1 +

1

24
+ · · ·+ 1

k4

)
etc . . .

Then, by letting k go to in�nity, he obtained

1 +
1

2
+

1

3
+

1

4
+ · · · = ln(∞) + C (1.3.1)

where C is de�ned by

C =
1

2

(
1 +

1

22
+

1

32
+ . . .

)
− 1

3

(
1 +

1

23
+

1

33
+ . . .

)
+

1

4

(
1 +

1

24
+

1

34
+ . . .

)
− . . .

Euler observed that the series de�ning C converges (we can convince ourselves that
this is true using the convergence of the series of the reciprocals and the Alternating
Series Test) and even approximated it to be C ≈ 0.577218. Since C is a constant, Euler
deduced from equation (1.3.1) the following one:

1 +
1

2
+

1

3
+

1

4
+ · · · = ln(∞) (1.3.2)

since adding a constant does not change the rate at which the series diverges. Concerning
the constant C de�ned above, Euler considered it to be of great interest since it
appears in a lot of other results. Notice that it is the same constant that appeared
in Exercise 1.1.6 which means that Euler also computed in 1735 with greater precision
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this time. Today, this constant is denoted by the greek letter γ, and it is called the
Euler-Mascheroni constant. This constant is very mysterious and we know very little
about it even though it comes up in a lot of di�erent places. We don't know yet for
sure if it is irrational.

Today, these distinct in�nites are replaced by the notion of asymptotic behaviors.
For example, with the standard modern notation, we would write equation (1.3.1) as

n∑
k=1

1

k
= ln(n) + γ + o(1). (1.3.3)

For more informations and a more rigorous treatment of asymptotic behaviors of sequences
and functions, I recommend reading Appendix A which is entirely dedicated to this
subject of great importance for the next chapters.

Euler's In�nite Products

We are now ready to understand the theorems that will be interesting for us in the
paper. The �rst six theorems of the paper are dedicated to �nding the limits of various
series where the terms follow intricate rules. With a modern notation, Euler studied
subsets A of the natural numbers and the corresponding series

∞∑
n=1
n∈A

f(n)

n

where f : A → {±1} is a function that decides the sign of each term. For example, the
�rst theorem of the paper states that if A is the set of all numbers of the form mn − 1,
and f puts a positive sign to each element of the set, then the corresponding series is
equal to

1

3
+

1

7
+

1

8
+

1

15
+

1

24
+ · · · = 1.

Euler attributes this theorem to Christian Goldbach (1690 - 1764), a Prussian mathema-
tician. In a similar way, the third theorem of the paper states that if A is the set of
multiples of 4 that are one less or one more than a power of an odd number, and f puts
a positive sign to elements that exceed a power by a unit and a minus sign to the other
elements, then the corresponding series is equal to

π

4
= 1− 1

8
− 1

24
+

1

28
− 1

48
− 1

80
− 1

120
− 1

124
− . . .

Finally, the sixth theorem states that if A is the set of numbers that are one less than
squares that can also be written as another power, and f gives a positive sign to each
element of A, then the corresponding series is equal to

7

4
− π2

6
=

1

15
+

1

63
+

1

80
+

1

255
+

1

624
+ . . .
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As mentionned above, even though these results are very surprising, it is the next
theorem that will be interesting for our story and that we will discuss in more details.
His seventh theorem is the following:

2 · 3 · 5 · 7 · 11 · . . .
1 · 2 · 4 · 6 · 10 · . . .

= 1 +
1

2
+

1

3
+

1

4
+

1

5
+ . . . (1.3.4)

where, on the left hand side, the numerator is the product of all prime numbers and
the denominator is the product of the numbers that are one less than the numbers in
the numerator, and the right hand side is the Harmonic Series. Right before stating his
seventh theorem, Euler points out that in�nite products are "not less admirable" than
in�nite sums. Hence, equation (1.3.4) relates the Harmonic Series to its analoguous,
and not less interesting, in�nite product. Let's take a look at the proof of equation
(1.3.4) that Euler proposed.

The �rst step of his proof is to let x be equal to the Harmonic Series and to notice
that

1

2
x =

1

2
+

1

4
+

1

6
+

1

8
+ . . .

is the series of the reciprocals of the even numbers. From that, he deduced that

1

2
x = x− 1

2
x =

(
1 +

1

2
+

1

3
+

1

4
. . .

)
−
(
1

2
+

1

4
+

1

6
+

1

8
. . .

)
= 1 +

1

3
+

1

5
+ . . .

is the series of the reciprocals of the odd numbers. Next, he divides both sides of the
previous equation by 3 to get

1

2
· 1
3
x =

1

3
+

1

9
+

1

15
+

1

21
+ . . .

which implies that

1

2
· 2
3
x =

1

2
x− 1

2
· 1
3
x

=

(
1 +

1

3
+

1

5
+

1

7
+ . . .

)
−
(
1

3
+

1

9
+

1

15
+

1

21
+ . . .

)
= 1 +

1

5
+

1

7
+

1

11
+

1

13
+

1

17
+ . . .

is the series of the reciprocals of the numbers that are not divisible by 2 or 3. In the
same way, he concluded that

1

2
· 2
3
· 4
5
x = 1 +

1

7
+

1

11
+

1

13
+ . . .

is the series of the reciprocals of the numbers that are not divisible by 2, 3 or 5. Thus,
by extending this pattern to in�nity, he concluded that

1 · 2 · 4 · 6 · 10 · . . .
2 · 3 · 5 · 7 · 11 · . . .

x = 1
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and so
2 · 3 · 5 · 7 · 11 · . . .
1 · 2 · 4 · 6 · 10 · . . .

= 1 +
1

2
+

1

3
+

1

4
+

1

5
+ . . .

The lack of rigor in this proof makes it hard to learn anything from these manipulations
since the only trick used in the proof is, by today's standards, illegal. However, I still
chose to present this proof because right after this theorem, Euler generalized his result
to obtain a new theorem which is of great interest for our broader study of L-functions.
His eighth theorem is the following:

2n

2n − 1
· 3n

3n − 1
· 5n

5n − 1
· 7n

7n − 1
· · · = 1

1n
+

1

2n
+

1

3n
+

1

4n
+ . . . (1.3.5)

where the in�nite product on the left hand side is taken over all the prime numbers.
It is this formula that creates a �rst link between the prime numbers and the series on
the right hand side of the equation. Notice that if we plug-in n = 1, we get Euler's
previous theorem.

To prove equation (1.3.5), the technique is precisely the same as before. Euler let x
be equal to the series on the left hand side of equation (1.3.5) and divided it by 2n to
obtain

1

2n
x =

1

2n
+

1

4n
+

1

6n
+

1

8n
+ . . .

Thus, by looking at the di�erence between this new series with x, he obtained

2n − 1

2n
x =

(
1

2n
+

1

4n
+

1

6n
+ . . .

)
−
(

1

1n
+

1

2n
+

1

3n
+ . . .

)
=

1

1n
+

1

3n
+

1

5n
+ . . .

where the sum on the right hand side is taken over all the odd numbers. Again, by
extending this process to in�nity, he concluded in the same way as before that(

2n − 1

2n
· 3

n − 1

3n
· 5

n − 1

5n
· 7

n − 1

7n
· . . .

)
x = 1

from which he easily deduced equation (1.3.5).
Notice that even though this proof is nearly exactly the same as the previous one,

it is way more rigorous by today's standard since in the case n > 1, all the series
involved in the proof are now convergent (by the p-series test). From this theorem,
Euler deduced that with n = 2 and using equation (1.2.13), he obtained

4 · 9 · 25 · 49 · . . .
3 · 8 · 24 · 48 · . . .

=
π2

6
. (1.3.6)

which seems far from obvious at �rst sight since it relates an in�nite product of squares
of prime numbers with the square of the constant π. We can obtain similar formulas if
we let n be any other positive even number using the fact that Euler found a way to
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�nd a closed formula for the series on the right hand side of equation (1.3.5). Moreover,
by writing equation (1.3.5) as(

1

1n
+

1

2n
+

1

3n
+

1

4n
+ . . .

)−1

=

(
1− 1

2n

)(
1− 1

3n

)(
1− 1

5n

)(
1− 1

7n

)
. . .

and by expanding the right hand side, we obtain(
1

1n
+

1

2n
+

1

3n
+

1

4n
+ . . .

)−1

= 1− 1

2n
− 1

3n
− 1

5n
+

1

6n
− 1

7n
+

1

10n
− . . . (1.3.7)

where the sum on the right hand side is taken over all the square-free integers, and the
sign of each term is determined by the number of prime numbers dividing the term.
For example, if we plug-in n = 2, we obtain

6

π2
= 1− 1

22
− 1

32
− 1

52
+

1

62
− 1

72
+

1

102
− . . . (1.3.8)

As we just showed with equations (1.3.6) and (1.3.8), we can deduce a lot of
surprising formulas from equation (1.3.5). Euler spent the next ten theorems exploring
the conse-quences of his product formula.

The Series of the Reciprocals of the Prime Numbers

Finally, after all of these results, Euler states his �nal theorem of the paper, the
nineteenth theorem:

1

2
+

1

3
+

1

5
+

1

7
+

1

11
+ · · · = ln(ln(∞)) (1.3.9)

where the left hand side is the sum of the reciprocals of the prime numbers. This
theorem is of great importance because, as Euler points it out himself, not only it
proves that there are in�nitely many prime numbers as Euclid proved it nearly two
millenials before, but it also shows that the prime numbers are, in a sense, in�nitely
more numerous than the squares. The argument is that there are obviously in�nitely
many squares in the natural numbers, but the squares are so sparse that the series

1

12
+

1

22
+

1

32
+

1

42
+

1

52
+

1

62
+ . . .

converges. However, there are in�nitely many prime numbers, and equation (1.3.9) tells
us that the sum of their reciprocals is in�nite. Thus, the prime numbers are more dense
since the series of their reciprocals diverges. Let's take a look at how Euler proved it.



CHAPTER 1. EULER'S MARVELOUS SERIES 28

First, he let

1

2
+

1

3
+

1

5
+

1

7
+

1

11
+ . . . = A

1

22
+

1

32
+

1

52
+

1

72
+

1

112
+ . . . = B

1

23
+

1

33
+

1

53
+

1

73
+

1

113
+ . . . = C

1

24
+

1

34
+

1

54
+

1

74
+

1

114
+ . . . = D

etc . . .

where the sums on the left hand side are taken over the prime numbers. Then, he
observed that by dividing both sides of the second equation by 2, the third equation by
3, the fourth equation by 4, etc..., he would obtain

A =
1

2
+

1

3
+

1

5
+

1

7
+

1

11
+ . . .

1

2
B =

1

2
· 1

22
+

1

2
· 1

32
+

1

2
· 1

52
+

1

2
· 1

72
+

1

2
· 1

112
+ . . .

1

3
C =

1

3
· 1

23
+

1

3
· 1

33
+

1

3
· 1

53
+

1

3
· 1

73
+

1

3
· 1

113
+ . . .

1

4
D =

1

4
· 1

24
+

1

4
· 1

34
+

1

4
· 1

54
+

1

4
· 1

74
+

1

4
· 1

114
+ . . .

etc . . .

By taking the sum on both sides column by column, we get

A+
1

2
B +

1

3
C +

1

4
D + . . . =

(
1

2
+

1

2
· 1

22
+

1

3
· 1

23
+

1

4
· 1

24
+ . . .

)
+

(
1

3
+

1

2
· 1

32
+

1

3
· 1

33
+

1

4
· 1

34
+ . . .

)
+

(
1

5
+

1

2
· 1

52
+

1

3
· 1

53
+

1

4
· 1

54
+ . . .

)
+

(
1

7
+

1

2
· 1

72
+

1

3
· 1

73
+

1

4
· 1

74
+ . . .

)
+ etc . . .

= ln

(
1

1− 1
2

)
+ ln

(
1

1− 1
3

)
+ ln

(
1

1− 1
5

)
+ ln

(
1

1− 1
7

)
+ . . .

= ln

(
2

1

)
+ ln

(
3

2

)
+ ln

(
5

4

)
+ ln

(
7

6

)
+ . . .

= ln

(
2 · 3 · 5 · 7 · . . .
1 · 2 · 4 · 6 · . . .

)
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But now, in the last expression of the equation, Euler recalled his seventh theorem
(equation (1.3.4)) to deduce the following equation:

A+
1

2
B +

1

3
C +

1

4
D + · · · = ln

(
1 +

1

2
+

1

3
+

1

4
+

1

5
+ . . .

)
(1.3.10)

Since the Harmonic Series diverges, then the right hand side of the equation diverges,
and certainly the left hand side diverges as well. Next, Euler claims that the expression

1

2
B +

1

3
C +

1

4
D + . . .

is �nite. To see why, we can notice that

B =
1

22
+

1

32
+

1

52
+ · · · ≤ 1

22
+

1

32
+

1

42
+

1

52
+ . . . ,

where the series on the right hand side is the sum of the reciprocals of the squares
without the �rst term. By interpreting the series on the right hand side as the area of
the rectangles having width 1 and height equal to the term of the series as in Figure 1.3
and Figure 1.4, we obtain the inequality

B ≤ 1

22
+

1

32
+

1

42
+

1

52
+ · · · ≤

∫ ∞

1

1

x2
dx = 1.

Similarly, with the same argument, we obtain

C ≤ 1

2
D ≤ 1

3
E ≤ 1

4
etc...

and so it follows that

1

2
B +

1

3
C +

1

4
D + · · · ≤ 1

2 · 1
+

1

3 · 2
+

1

4 · 3
+ · · · = 1 < ∞

using equation (1.1.6). Therefore, the expression 1
2
B + 1

3
C + 1

4
D + . . . is a constant so

in equation (1.3.10), since the left hand side diverges, then A must be the only in�nite
term.

If we look at equation (1.3.10) again and use the fact that everything except A is a
constant on the left hand side, we obtain the simpler equation

A = ln

(
1 +

1

2
+

1

3
+

1

4
+

1

5
+ . . .

)
. (1.3.11)

Finally, by using the de�nition of A and the fact that the Harmonic Series is equal to
ln(∞) (see equation (1.3.2)), Euler obtained

1

2
+

1

3
+

1

5
+

1

7
+

1

11
+ · · · = ln(ln(∞)). (1.3.12)

For Euler, this was a striking result. Here is what he had to say about this discovery at
the beginning of an article he wrote in 1775 called De summa seriei ex numeris primis
formatae [...] [17]:
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1 2 3 4 5

y =
1

x2

Figure 1.3: Visual interpretation of
1
22

+ 1
32

+ 1
42

+ 1
52

+ . . .

1 2 3 4 5

y =
1

x2

Figure 1.4: Visual interpretation of∫∞
1

1
x2dx

Even as Euclid had demonstrated that the multitude of prime numbers
is in�nite, many years ago I also showed that the sum of the series of the
reciprocals of the primes [...] is in�nitely large; more precisely, I showed
that it has the magnitude of the logarithm of the harmonic series [...] which
seems not just a little remarkable, since commonly the harmonic series is
counted as the smallest kind of in�nite. 1

The divergence of the reciprocals of the prime number can be more rigorously stated,
with a modern notation, as follows:∑

p≤n
p prime

1

p
= ln(ln(n)) +M + o(1) (1.3.13)

where M is a constant called that Meissel-Martens constant. This constant is the
analoguous of the Euler constant γ for the series of the reciprocals of the prime numbers.

Euler's paper �nishes with the proof of the nineteenth theorem. Again, if we forget
about rigor, the proof is full of creativity, and it really shows how easy it was for Euler
to use all of these seemingly complicated formulas. We often say that Euler's identity:

eiπ + 1 = 0,

is beautiful because it links a lot of di�erent concepts in one single equation. However,
by looking at Euler's use of logarithms, series, integrals, in�nite products, prime numbers,
telescoping series, etc . . . , in the previous proof and in his whole paper, it is clear that
Euler's identity is, by far, not the only of Euler's work to display such deep links between
these di�erent mathematical objects.

At the beginning of this section, I mentionned that the paper we studied would
create a link between series of the reciprocals of the powers, and prime numbers. Now

1Translated from the Latin by Jordan Bell, Department of Mathematics, University of Toronto,
Toronto, Ontario, Canada.
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that we went over the theorems presented in the paper, we see that this link was
established with equation (1.3.5). However, for the moment, this link may not seem
very surprising. After all, this equation can be interpreted as another way of saying
that any natural number can be uniquely written as a product of prime numbers, and
that's it. The only original thing about this equation is that it involves series and in�nite
products. However, this precise equation will turn out to have a great importance in the
future of Number Theory. Precisely one century after Euler's Paper, the mathematician
Peter Lejeune Dirichlet would use this same equation to prove his famous theorem on
arithmetic progressions, and hence, be one of the founder of Analytic Number Theory.

The second important result of the paper, is equation (1.3.9). Again, this result can
be interpreted as another way of saying that there are in�nitely many primes numbers.
What is original about this equation is, again, that it is stated using series, and that
it also carries an additional information about the density of the prime number as a
subset of the natural numbers. Euler's quote from earlier in this section is from a paper
he wrote in 1775 in which he extended his work on the series of the reciprocals of the
prime numbers. In this paper, he proved that the series of the reciprocals of the prime
numbers of the form 4n+ 1 diverges and that the series of the reciprocals of the prime
numbers of the form 4n− 1 diverges as well. He even conjectured that the series of the
reciprocals of the prime numbers of the form 100n + 1 diverges. As a direct corollary,
we have that there are in�nitely many prime numbers of the form 4n + 1 and of the
form 4n− 1. These theorems will be extended into a more general theorem proved by
Dirichlet: there are in�nitely many prime numbers of the form an + b where a and b
have no common divisors. Let's end this section with a quote by William Dunham that
summerizes well our previous discussion on Euler's work.

Those familiar with the prime number theorem may forget how wondrous
a thing it is, linking primes to the natural logarithm function. Yet this is
precisely the sort of connection - between discrete and continuous - that
Euler �rst perceived [...]. If Euler does not quite deserve to be called the
"parent" of analytic number theory, let us at least credit him with being its
obvious grandparent. 2

Exercises

Exercise 1.3.1. The goal of this exercise is to prove that the in�nite product
∏

p(1−
p−s)−1 converges for all real numbers s > 1. To prove that it converges, we will mostly
rely on properties of the logarithm since it will be used to convert products into a sums.

(a) Using the Taylor expansion of ln(1 + x), prove that

ln(1 + x) = x+R(x)

2Quote from the end of Chapter 4, Euler : The Master of Us All [3].
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for all x ∈ (−1, 1) where

R(x) = −x2

2

∞∑
n=0

(−1)n
2xn

n+ 2
.

(b) Show that |R(x)| ≤ x2 when |x| < 1/2.

(c) Use part (b) to prove that
| ln(1 + x)| ≤ 2|x|

provided |x| < 1/2.

(d) From the inequality proved in part (c), show that the sequence
∏N

n=1(1 + an)
converges if we suppose that the series

∑∞
n=1 |an| converges. Moreover, show that

the product converges to 0 only if one of its term is 0.

(e) Conclude that the in�nite product
∏

p(1− p−s)−1 converges.

Exercise 1.3.2. The goal of this exercise is to prove Euler's Product Fomula (1.3.5)
rigorously for all real numbers s > 1. If we �x s > 1, then by the p-series test and
Exercise 1.3.1, we know that both

∑∞
n=1 n

−s and
∏

p(1− p−s)−1 converge.

(a) Let N ≤ M be two positive integers. Argue that if n ≤ N and n = pe11 · ... · pekk ,
then pi ≤ N and ei ≤ M for all i ∈ J1, kK.

(b) Using part (a), deduce that

N∑
n=1

1

ns
≤

∏
p≤N

M∑
k=1

1

pks
.

(c) Conclude with the following inequality:

∞∑
n=1

1

ns
≤

∏
p

(
1

1− p−s

)
.

(d) To prove the reverse inequality, take positive integers N and M and prove that

∏
p≤N

M∑
k=1

1

pks
≤

∞∑
n=1

1

ns
.

(e) From part (d), deduce that ∏
p

(
1

1− p−s

)
≤

∞∑
n=1

1

ns

and conclude that the two values are equal.
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1.4 The Bernoulli Numbers

As it was mentionned in the previous sections, Euler really became passionate about
series of the form

1 +
1

2n
+

1

3n
+

1

4n
+

1

5n
+ . . . (1.4.1)

He wrote numerous articles about these series and found several other interesting results
other than the ones presented in the two previous sections. In this section, we will
study one of these results that Euler found which relates these series with an important
sequence of numbers discovered by Jakob Bernoulli. To understand this result, recall
that in his 1735 paper, in which he found the value of the series (1.4.1) with n = 2,
he also found a way to deduce all the values of the series (1.4.1) where n is an even
number. However, even if the method worked really well, it was time consuming since
it was recursive: to �nd the value of the series for some even number n, it is required
to �rst �nd the values of the series for all even numbers smaller than n.

A few years later, in his paper De seriebus quibusdam considerationes [13], written
in 1739 and published in 1750, Euler found a better method: a general formula for
computing the series (1.4.1) which only depends on n when n is even. However, to
understand this general formula, we �rst need to learn about this sequence of the
numbers that Jakob Bernoulli found a few decades before.

Bernoulli's Formula

In his famous bookArs Conjectandi [2], published posthumously in 1713, Jakob Bernoulli
consider sums of the form

1m + 2m + 3m + · · ·+ nm.

We all have probably seen before that for m = 1, m = 2 and m = 3, we have the
following formulas

11 + 21 + 31 + · · ·+ n1 =
n(n+ 1)

2

12 + 22 + 32 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6

13 + 23 + 33 + · · ·+ n3 =

[
n(n+ 1)

2

]2
which have been known for more than a millenia. With some clever algebraic manipu-
lations, we can �nd similar formulas for all the higher values of m. However, only by
looking at the three previous equations, an important question arises: what relates
these three formulas ? They have some similarities, but not enough to be able to �nd
their general form (if there is one). It is this question that Bernoulli answered in a
chapter of his book.
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First, let's rewrite these formulas as well as the formulas for some higher terms of
m, and let's expand them as polynomials in n:∫

n0 = 1 · n∫
n1 =

1

2
n2 +

1

2
n∫

n2 =
1

3
n3 +

1

2
n2 +

1

6
n∫

n3 =
1

4
n4 +

1

2
n3 +

1

4
n2 + 0 · n∫

n4 =
1

5
n5 +

1

2
n4 +

1

3
n3 + 0 · n2 − 1

30
n∫

n5 =
1

6
n6 +

1

2
n5 +

5

12
n4 + 0 · n3 − 1

12
n2 + 0 · n

where
∫
nm denotes the sum 1m + · · ·+ nm. Written in this way, it seems like there is

a lot of patterns to spot. The �rst term of the sum of the powers of m is always nm+1

m+1
.

Notice that this is really the discrete analogue of the fact that∫ n

0

xmdx =
1

m+ 1
xm+1

since we can view a sum as a discrete version of the integral. Therefore, the remaining
terms in the above formulas can be seen as the correcting terms from this integral-sum
correspondence. But this is not the only pattern we can �nd by looking at the above
formulas, for example, the fourth column only contains 0's, the second column only
contains 1

2
's, and so on. But all of these patterns does not let us predict exactly the

next formula, the formula for the sum of the n �rst powers of 6. With our observations,
we could guess that this formula might look like∫

n6 =
1

7
n7 +

1

2
n6 + An5 + 0 · n4 +Bn3 + 0 · n2 + Cn

where the coe�cients A, B and C could not be determined by our observations. Using
some pretty complicated algebraic manipulations, we get that the true formula is the
following: ∫

n6 =
1

7
n7 +

1

2
n6 +

1

2
n5 + 0 · n4 +−1

6
n3 + 0 · n2 +

1

42
n

which means that we were close. The question now is the following: is there an ultimate
pattern that would let us �nd these formulas easily ? It is exactly this pattern that
Bernoulli found and presented in his book.

Without going into the details, the key is to look at the coe�cient in front of n in
each formula. We can see that starting from m = 3, the the coe�cients in front of n
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when m is odd seems to always be zero. Bernoulli didn't prove this but he still used it
when he de�ned his sequence. From this observation, he de�ned the sequence

b1 =
1

6
b2 = − 1

30
b3 =

1

42
b4 = − 1

30
b5 =

5

66

where bm is the coe�cient in front of n in the polynomial expression of
∫
n2m. These

numbers are the �rst Bernoulli numbers. What Bernoulli noticed, but didn't prove,
is that we only need these numbers to recover all the formulas we found and all the
formulas for higher powers. Here is Bernoulli's general formula:∫

nm =
1

m+ 1
nm+1 +

1

2
nm +

m

2
b1n

m−1 +
m(m− 1)(m− 2)

2 · 3 · 4
b2n

m−3

+
m(m− 1)(m− 2)(m− 3)(m− 4)

2 · 3 · 4 · 5 · 6
b3n

m−5 + . . .

This formula looks complicated but if we look at it more closely, we can notice that
if we factorize by 1

m+1
, then the coe�cients simply becomes the binomial coe�cients.

Thus, with a more modern notation, we can rewrite Bernoulli's formula as follows:∫
nm =

1

m+ 1

[
nm+1 +

m+ 1

2
nm +

(
m+ 1

2

)
b1n

m−1 +

(
m+ 1

4

)
b2n

m−3 + . . .

]
(1.4.2)

which now looks a bit simpler. Therefore, thanks to Bernoulli's formula, we get that the
problem of �nding the formula for the sum of the �rst mth power simply gets reduced
to the problem of �nding the �rst m/2 Bernoulli numbers. This seems easier but we
quickly run into a problem: we de�ned and �nd the Bernoulli numbers by �rst �nding
the desired formulas, but we are using the Bernoulli numbers to �nd these desired
formulas, is there another way of �nding the Bernoulli numbers without having to �nd
the desired formulas �rst ? Fortunately, the answer is yes, it su�ces to plug-in n = 1
in equation (1.4.2), to obtain the new equation

1 =
1

m+ 1

[
1 +

m+ 1

2
+

(
m+ 1

2

)
b1 +

(
m+ 1

4

)
b2 + . . .

]
which, for a given m, relates the Bernoulli number with the highest index directly to
those with an index smaller. For example, if we plug-in 2m instead of m, then we get

1 =
1

2m+ 1

[
1 +

2m+ 1

2
+

(
2m+ 1

2

)
b1 +

(
2m+ 1

4

)
b2 + · · ·+

(
2m+ 1

2m

)
bm

]
which we can rewrite as

bm = 1− 1

2m+ 1

[
1 +

2m+ 1

2
+

(
2m+ 1

2

)
b1 +

(
2m+ 1

4

)
b2 + . . .

]
(1.4.3)

This equation is precisely what we need since it lets us compute each Bernoulli number
using the previous ones. Therefore, the problem of �nding a general pattern in the
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formulas of the sum of the powers of a given positive integer is solved thanks to this
mysterious sequence discovered by Jakob Bernoulli.

But as it was just said, this sequence is really mysterious. If we look back to
Bernoulli's formula, it is unclear why the �rst terms of the formula do not seem to
obey the same pattern as the ones that involve the Bernoulli numbers. Similarly,
we saw that the Bernoulli numbers arise from looking at the last coe�cient in the
polynomial expression of

∫
nm. But by looking at these last coe�cients, we observe a

similar irregularity, the �rst three coe�cients are non-zero but after that, they alternate
between being zero and non-zero. Moreover, the signs of these coe�cients doesn't seem
to follow clear pattern as well. By solving the problem of �nding a general formula for∫
nm, it seems like Jakob Bernoulli opened the door to a deeper problem. Fortunately,

the Great Euler would bring more light to this sequence. For more informations about
the Bernoulli numbers, I strongly recommend the excellent Youtube video Power sum
MASTER CLASS [20] which is an excellent introduction to the Bernoulli numbers and
their applications.

Two Proofs From Euler

As we will see, Euler really made the study of the Bernoulli numbers central in the
theory of series. Even though most of the results that we will consider in this section
were found by Euler between 1732 and 1739, Euler only made the connection between
the numbers he was studying and the Bernoulli numbers in 1740 when he wrote his
book Institutiones Calculi di�erentialis [5], published in 1755. This is the reason why
we will focus on the Institutiones to understand Euler's contribution to the study of
the Bernoulli numbers.

In chapter 5 of part 2 of the Institutiones, Euler started by rederiving his summation
formula which we discussed in section 1.1. As a reminder, given a function f(x) and
de�ning the function S(x) as

S(x) = f(a) + f(a+ 1) + f(a+ 2) + · · ·+ f(x) (1.4.4)

where a is any number, then Euler derived a continuous formula for S(x) which interpolates
the �rst de�nition of S(x) which is only valid for a discrete set of values of x:

S(x) = α0

∫
f(x)dx+ α1f(x) + α2

df

dx
+ α3

d2f

dx2
+ α4

d3f

dx3
+ · · ·+ C (1.4.5)

where C is a constant that makes S(a − 1) = 0, and the α′
ns satisfy the following
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formulas:

1 = α0

0 =
α1

1
− α0

2

0 =
α2

1
− α1

2
+

α0

6

0 =
α3

1
− α2

2
+

α1

6
− α0

24

0 =
α4

1
− α3

2
+

α2

6
− α1

24
+

α0

120
etc . . .

from which we obtain

α0 = 1 α1 =
1

2
α2 =

1

12
α3 = 0 α4 = − 1

720
α5 = 0

α6 =
1

30240
α7 = 0 α8 = − 1

1209600
α9 = 0 α10 =

1

47900160
α11 = 0

Euler focused his attention on this sequence and the recursive formulas that relates its
terms. By looking at the terms of the sequence, Euler noticed two things: that the odd
terms are all 0 except α1, and the even terms have alternating signs starting from α2.
Let's look at Euler's proof of these two facts.

First, looking at the ascending factorials in the numerator and the descending indices
in each of the recursive formulas, Euler could have noticed the similarity with the
formula of the terms resulting from the multiplication of two series (which is now
mysteriously known as the Cauchy Product). He considered the following function:

V (u) = α0 + α1u+ α2u
2 + α3u

3 + α4u
4 + . . . (1.4.6)

and computed the following series expansion:

1− e−u

u
= 1− 1

2
u+

1

6
u2 − 1

24
u3 +

1

120
u4 − ... (1.4.7)

from the series exponential of the exponential function. Then, he simply multiplied
both series to obtain:

1− e−u

u
V (u) = α0 +

(α1

1
− α0

2

)
u+

(α2

1
− α1

2
+

α0

6

)
u2 + . . .

But since the coe�cients in front of the powers of u are simply the recursive formulas
he found above for the αn's, he concluded that

1− e−u

u
V (u) = 1
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and so
u

1− e−u
= α0 + α1u+ α2u

2 + α3u
3 + α4u

4 + . . . (1.4.8)

From this equation, he substracted both sides by u/2 to obtain

α0 + α2u
2 + α3u

3 + α4u
4 + · · · = u

1− e−u
− u

2
=

u(e
1
2
u + e−

1
2
u)

2(e
1
2
u − e−

1
2
u)

(1.4.9)

and then expanded the numerator and denominator into series to get

α0 + α2u
2 + α3u

3 + α4u
4 + · · · =

1 + u2

2·4 +
u4

2·4·6·8 + . . .

1 + u2

4·6 +
u4

4·6·8·10 + . . .
(1.4.10)

Finally, Euler argued that if the right hand side were to be expanded as a series, then
it would only contain even powers of u since both the numerator and denominator only
contain even powers (Exercise 1.4.1). Therefore, the odd coe�cients on the left hand
side must all be equal to zero.

To prove his second observation on the behavior of the αn's, Euler rewrote equation
(1.4.10) using the fact that the odd coe�cients are zero as follows :

1 + u2

2·4 +
u4

2·4·6·8 +
u6

2·4·6·8·10·12 + . . .

1 + u2

4·6 +
u4

4·6·8·10 +
u6

4·6·8·10·12·14 + . . .
= 1 + α2u

2 + α4u
4 + α6u

6 + . . . (1.4.11)

He then multiplied both sides of the previous equation by the numerator of the fraction
on the left hand side, and expanded the product of series to obtain an equality between
two series. From this equality between two series, he obtained the following formulas
for the αn's:

α2 =
1

2 · 4
− 1

4 · 6
α4 =

1

2 · 4 · 6 · 8
− α2

4 · 6
− 1

4 · 6 · 8 · 10
α6 =

1

2 · 4 · 6 · · · 12
− α4

4 · 6
− α2

4 · 6 · 8 · 10
− 1

4 · 6 · · · 14

In modern notation, these formulas can be rewritten as follows:

α2n =
1

22n(2n)!
−

n∑
k=1

α2(n−k)

22k(2k + 1)!
(1.4.12)

From these formulas, Euler then stated that equation (1.4.11) still holds if we make all
the series involved in the equation alternate signs (Exercise 1.4.3). Thus, he obtained

1− u2

2·4 +
u4

2·4·6·8 −
u6

2·4·6·8·10·12 + . . .

1− u2

4·6 +
u4

4·6·8·10 −
u6

4·6·8·10·12·14 + . . .
= 1− α2u

2 + α4u
4 − α6u

6 + . . . (1.4.13)
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From this equation, Euler divided both sides by u and rewrote the equation as follows:

1

2
·

1− (u
2
)2

1·2 +
(u
2
)4

1·2·3·4 −
(u
2
)6

1·2·3·4·5·6 + . . .

(u
2
)− (u

2
)3

1·2·3 +
(u
2
)5

1·2·3·4·5 −
(u
2
)7

1·2·3·4·5·6·7 + . . .
=

1

u
− α2u+ α4u

3 − α6u
5 + . . . (1.4.14)

On the left hand side, he recognized the numerator to be the series expansion of the
function cos(1

2
u), and similarly he recognized the denominator to be the series expansion

of the function sin(1
2
u). Thus, the previous equation can be rewritten as

1

2
cot

(
1

2
u

)
=

1

u
− α2u+ α4u

3 − α6u
5 + . . . (1.4.15)

Next, towards his goal, Euler de�ned the new sequence

A1 = α2 A2 = −α4 A3 = α6 A4 = −α8 etc...

for which it su�ces to show that all the terms are positive to prove the alternating
property of the even αn's. With this new sequence, Euler de�ned a new function s

s =
1

2
cot

(
1

2
u

)
=

1

u
− A1u− A2u

3 − A3u
5 − A4u

7 − . . . (1.4.16)

and immediately derived that this function satis�es the following di�erential equation:

4ds

du
+ 1 + 4s2 = 0. (1.4.17)

But since we have an expression of s in terms of the An's, then plugging this expression
into the di�erential equation leads to

4ds

du
= − 4

u2
− 4A1 − 4 · 3A2u

2 − 4 · 5A3u
4 − 4 · 7A4u

6 − . . .

4s2 =
4

u2
− 8A1 + (4A2

1 − 8A2)u
2 + (8A1A2 − 8A3)u

4 + . . .

and so

0 =
4ds

du
+ 1 + 4s2 = (1− 12A1) + (4A2

1 − 20A2)u
2 + (8A1A2 − 28A3)u

4 + . . .

From this equation, Euler concluded that all the coe�cients must zero and so he
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obtained the following recursive equations

A1 =
1

12

A2 =
A1A1

5

A3 =
2A1A2

7

A4 =
2A1A3 + A2A2

9

A5 =
2A1A4 + 2A2A3

11

A6 =
2A1A5 + 2A2A4 + A3A3

13

A7 =
2A1A6 + 2A2A5 + 2A3A4

15

A8 =
2A1A7 + 2A2A6 + 2A3A5 + A4A4

17
etc . . .

from which he concluded that theAn's must be positive, and so the sequence α2, α4, α6, . . .
must have alternating signs. Therefore, Euler proved his two observations about the
sequence of αn's. But there is one last observation that would have an important impact
on everything that will follow. Looking back at the sequence of An's, Euler noticed that
the denominators are growing very fast and so he decided to rewrite each term of the
sequence as follows:

A1 =
1

6
· 1

1 · 2
A2 =

1

30
· 1

1 · · · 4
A3 =

1

42
· 1

1 · · · 6
A4 =

1

30
· 1

1 · · · 8

and from these new expressions, he �nally recognized that the �rst factors are precisely
the Bernoulli numbers (more precisely, their absolute value). But before looking at the
consequences of this observation, we �rst need to recall the de�nition of the Bernoulli
numbers and make some modi�cations.

De�ning the Bernoulli Numbers

As we saw earlier in this section, the Bernoulli numbers were originally de�ned by Jakob
Bernoulli as the coe�cients in front of n in the polynomial expression of

∫
n2m for

m ≥ 1. But this de�nition assumed that the coe�cient in front of n in the polynomial
expression of

∫
n2m+1 is zero for m ≥ 1. Moreover, this de�nition is not very satisfying

in the sense that it makes Bernoulli's formula irregular: the �rst term in the formula
don't seem to follow the same pattern as the remaining terms. One way to correct this
issue is to de�ne the mth Bernoulli number Bm as the coe�cient in front of n in the
polynomial expression of

∫
nm for m ≥ 0. Notice that this new de�nition is not so much
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di�erent from the original one since except for the �rst two terms, all the additional
Bernoulli numbers in the second de�nition are zero. From this de�nition, we get that
the �rst Bernoulli numbers are:

B0 = 1 B1 =
1

2
B2 =

1

6
B3 = 0 B4 = − 1

30
B5 = 0

B6 =
1

42
B7 = 0 B8 = − 1

30
B9 = 0 B10 =

5

66
B11 = 0

These new Bernoulli numbers can be used to express the original Bernoulli numbers as
follows: bm = B2m for all m ≥ 1. This new de�nition of the Bernoulli numbers lets us
rewrite Bernoulli's formula as follows:∫

nm =
1

m+ 1

m∑
k=0

(
m+ 1

k

)
Bk · nm+1−k (1.4.18)

which is way simpler than the �rst formulation given by Jakob Bernoulli since all the
terms in the formula seem to follow a clear pattern. Another interesting consequence
of this new de�nition is that Euler's observation that An = |bn|/(2n) for all n ≥ 1 can
be rewritten as

αn =
Bn

n!
(1.4.19)

for all n ≥ 0 which is much more simpler and nicer (Exercise 1.4.4). It turns out
that this new de�nition of the Bernoulli numbers make all the formulas involving these
numbers much more nicer. Therefore, it will be better to think of the Bernoulli numbers
as the sequence of Bn's and not the original bn's.

Now, let's reinterpret Euler's result about the αn's in terms of the Bernoulli numbers
using equation (1.4.19). First, Euler proved two important properties of the αn's:
α2n+1 = 0 for all n ≥ 1 and (−1)n+1α2n ≥ 0 for all n ≥ 1. Since Bn = n! · αn, then
the Bn's have the same signs and zeros as the αn's and so we get that B2n+1 = 0 for all
n ≥ 1 and (−1)n+1B2n ≥ 0 for all n ≥ 1 for free. This proves Bernoulli's observation
which motivated the �rst de�nition of the Bernoulli numbers.

Next, recall that from Bernoulli's formula, we deduced the recursive formula (1.4.3)
by plugging-in n = 1. Moreover, in his investigation of the αn's, Euler found some
other recursive formulas such as the one de�ning the αn's, the one proving that the
An's are positive, and equation (1.4.12). Using the correspondence between the αn's
and the Bn's, from the previously mentioned recursive formulas, we can deduce recursive
formulas for the Bernoulli numbers. From equation (1.4.18) and by plugging-in n = 1,
we obtain:

Bn = 1− 1

n+ 1

n−1∑
k=0

(
n+ 1

k

)
Bk (1.4.20)

for all n ≥ 0. From the recursive de�nition of the αn's, we obtain

Bn =
1

n+ 1

n−1∑
k=0

(−1)n+k+1

(
n+ 1

k

)
Bk (1.4.21)
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for all n ≥ 1. From equation (1.4.12), we get

B2n =
1

22n

[
1− 1

2n+ 1

n−1∑
k=0

22k
(
2n+ 1

2k

)
B2k

]
(1.4.22)

for all n ≥ 1. Finally, from the recursive formula of the An's used to show that the An's
are all positive, we get

B2n = − 1

2n+ 1

n−1∑
k=1

(
2n

2k

)
B2kB2(n−k) (1.4.23)

for all n ≥ 2. These formulas can be really useful for computing the Bernoulli numbers,
but also for deriving some of their key properties in the same way as Euler did.

One trick that Euler introduced in the two previous proofs that turned out to be
very important was to relate the αn's to the coe�cients in the series expansion of some
functions. From this, he was able to derive the recursive formulas and to deduce the
desired properties of the αn's. From equation (1.4.8), we get

x

1− e−x
=

∞∑
n=0

Bn
xn

n!
= B0 +B1x+B2

x2

2
+B3

x3

6
+ . . . (1.4.24)

and from equation (1.4.15) we obtain

1

2
cot

(
1

2
x

)
=

∞∑
n=0

(−1)n
B2n

(2n)!
x2n−1 =

1

x
− B2

2
x+

B4

24
x3 − B6

720
x5 + . . . (1.4.25)

As Euler noticed, we can recover all the Bernoulli numbers only from the function
x/(1−e−x). We call it the generating function of the Bernoulli numbers. This function is
important because it is now used as the de�nition of the Bernoulli numbers. This comes
from the fact that from equation (1.4.24), we can recover the recursive formula (1.4.21)
from which we can recover all the properties of the Bernoulli numbers. Moreover,
de�ning the Bernoulli numbers in this way makes the de�nition more compact.

In the past century, it seems like the de�nition of the Bernoulli numbers changed
slightly. Instead of using x/(1−e−x) as the generating function, some textbooks started
to de�ne the Bernoulli numbers as follows:

x

ex − 1
=

∞∑
n=0

Bn
xn

n!
= B0 +B1x+B2

x2

2
+B3

x3

6
+ . . .

which is not very di�erent from the previous generating function since

x

ex − 1
=

(−x)

1− e−(−x)
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which shows that this new generating function is just the �rst one evaluated at −x.
From this, it follows that the new generating function must have the same even Bernoulli
numbers since evaluating a function at −x does not change the coe�cients in front of
the even powers of x. Moreover, all the odd Bernoulli numbers except B1 are zero and so
they are unchanged as well. Therefore, the only di�erence between this new generating
function and the one found by Euler is that according to it, B1 = −1

2
instead of B1 =

1
2
.

This means that in the past century, some people started using an alternative de�nition
of the Bernoulli numbers in which B1 is negative instead of positive. After searching
an answer for weeks and reading numerous papers, I really can't seem to �nd a reason
for this change. This new de�nition, which is starting to be used in major Number
Theory textbooks, would have been justi�ed if it made some of the formulas involving
the Bernoulli numbers better looking. But this is false, these new Bernoulli numbers
actually make most of the formulas in which they appear worst.

This seems to be a very minor sign change but it turns out to be very important.
For more informations about the comparaison between the two generating functions of
the Bernoulli numbers, I strongly recommend reading the Bernoulli Manifesto written
by Peter Luschny. The Manifesto, written as an open letter addressed to the American
mathematician Donald Knuth (1938 - . . . ), explains in details and with important
arguments why we should use equation (1.4.24) as the de�nition of the Bernoulli
numbers. I strongly recommend reading Donald Knuth's answer which can be read
at the end of the Man�esto. Therefore, to be clear about this problem of de�ning the
Bernoulli numbers, it will be important to keep in mind that for the rest of this report,
I will use equation (1.4.24) as my de�nition of the Bernoulli numbers for historical and
practical reasons.

Understanding the Bernoulli Numbers

When Euler noticed the correspondence between the αn's and the Bernoulli numbers,
the �rst formula he rewrote in terms of the Bernoulli numbers was his summation
formula. This makes sense since the summation formula plays a central role here as it
is from this formula that Euler obtained the sequence of αn's. Recall that until this
point, Euler wrote the summation formula as follows:

S(x) = α0

∫
f(x)dx+ α1f(x) + α2

df

dx
+ α3

d2f

dx2
+ α4

d3f

dx3
+ · · ·+ C

where S(x) represents the sum of the f(i)'s with i ranging from i = a+1 to i = x, and
where

C = −
[
α0

∫
f(x)dx+ α1f(x) + α2

df

dx
+ α3

d2f

dx2
+ α4

d3f

dx3
+ . . .

]
x=a

.
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Thus, if we replace the αn's with the Bn's, distribute the constant C and use a modern
notation, we obtain

x∑
i=a+1

f(i) =
∞∑
k=0

Bk

k!
[f (k−1)(x)− f (k−1)(a)] (1.4.26)

where f (−1)(x) denotes any antiderivative of f(x). This way of writing the summation
formula is the way we write it today. An interesting fact about the summation formula,
written in this way, is that if we plug-in a = 0, x = n and f(x) = xm, we obtain
Bernoulli's formula (1.4.18) which is equivalent to Bernoulli's original formula (1.4.2).
Since Euler himself noticed this when he found the link between the αn and the Bernoulli
numbers, then it follows that Euler gave the �rst proof of Bernoulli's formula.

In accordance with Euler's original goal when creating his summation formula, let's
rewrite it as follows:

x∑
t=a+1

f(t)−
∫ x

a

f(t)dt =
∞∑
k=1

Bk

k!
[f (k−1)(x)− f (k−1)(a)]. (1.4.27)

Written in this way, it is clear that the summation formula can be viewed as a bridge
between the discrete and the continuous. It provides a formula for the error between
the value of a sum and its corresponding integral, it lets us compute one from the
another. Visually, the summation formula gives you a precise expression for the red
area representing the error in Figure 1.5.

1 2 3 4 5

y = f(x)

Figure 1.5: Visual interpretation of
Equation (1.4.27) with a = 1 and x = 5

When discussing Bernoulli's Formula at the begining of this section, it was mentioned
that the polynomial expression of

∫
nm was of the form∫

nm =

∫ n

0

xmdx+ error.

Comparing this with the above discussion on the Euler Summation Formula clearly
shows that the summation formula is a generalization of Bernoulli's Formula. Therefore,
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the Bernoulli numbers don't encapsulate the bridge between
∫
nm and

∫ n

0
xmdx but the

more general bridge between
∑

f(t) and
∫
f(t)dt. It is clear now that the Bernoulli

numbers are of high importance.

The General Formula

It seems like the section can end here, but remember that the goal of this section, as
it was presented at the very begining of it, is to understand one of Euler's greatest
discovery. As we have seen, Euler already made major discoveries by generalizing
Bernoulli's Formula and proving important properties of the the now called Bernoulli
numbers. However, there is one result that remains to be studied and which will we
have a great importance in the future.

Recall that when Euler solved the Basel Problem in 1735, he also found an general
method for �nding the following formulas:

1

12
+

1

22
+

1

32
+

1

42
+

1

52
+ . . . =

π2

6
1

14
+

1

24
+

1

34
+

1

44
+

1

54
+ . . . =

π4

90
1

16
+

1

26
+

1

36
+

1

46
+

1

56
+ . . . =

π6

945
1

18
+

1

28
+

1

38
+

1

48
+

1

58
+ . . . =

π8

9450
1

110
+

1

210
+

1

310
+

1

410
+

1

510
+ . . . =

π10

93555
1

112
+

1

212
+

1

312
+

1

412
+

1

512
+ . . . =

691 · π12

638512875

but as he explained it himself in his 1735 article, when the exponents gets larger, his
method would take too much time to apply.

In his book Institutiones Calculi di�erentialis written in 1740 and which we studied
earlier in this section, after studying the link between the Bernoulli numbers and his
own results, Euler would introduce a new way of computing the series above which
would take a considerable less amount of time compared to his �rst method. His new
method is simple: he recognized a pattern in the rational coe�cients in front of the
even powers of π, and hence found a general formula. Let's look at Euler's proof of this
formula.

First, Euler recalled his in�nite factoring trick he introduced in his 1735 paper, and
used it to write the sine function as follows:

sin(x) = x
(
1− x

π

)(
1 +

x

π

)(
1− x

2π

)(
1 +

x

2π

)
. . .

By replacing x with πu and taking the natural logarithm on both sides, he obtained

ln(sin(πu)) = ln(u) + ln (1− u) + ln (1 + u) + ln
(
1− u

2

)
+ ln

(
1 +

u

2

)
+ . . .
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from which he derived

π cot(πu) =
1

u
− 1

1− u
+

1

1 + u
− 1

2− u
+

1

2 + u
− . . .

by taking the derivative. Combining the terms in pairs gives

π cot(πu) =
1

u
− 2u

1− u2
− 2u

4− u2
− 2u

9− u2
− 2u

16− u2
− . . .

which can be rearranged into

1

2u2
− π

2u
cot(πu) =

1

1− u2
+

1

4− u2
+

1

9− u2
+

1

16− u2
+ . . .

Then, Euler expanded each term in the right hand side of the last equation as follows:

1

1− u2
= 1 + u2 + u4 + u6 + u8 + . . .

1

4− u2
=

1

22
+

u2

24
+

u4

26
+

u6

28
+

u8

210
+ . . .

1

9− u2
=

1

32
+

u2

34
+

u4

36
+

u6

38
+

u8

310
+ . . .

1

16− u2
=

1

42
+

u2

44
+

u4

46
+

u6

48
+

u8

410
+ . . .

Finally, by letting

a = 1 +
1

22
+

1

32
+

1

42
+ . . .

b = 1 +
1

24
+

1

34
+

1

44
+ . . .

c = 1 +
1

26
+

1

36
+

1

46
+ . . .

d = 1 +
1

28
+

1

38
+

1

48
+ . . .

and by taking the sum columns by columns of the serie expansions he �nd for the
fractions above, he obtained

1

2u2
− π

2u
cot(πu) = a+ bu2 + cu4 + du6 + eu8 + . . . (1.4.28)

What Euler managed to do is very impressive but the end goal seems preety far for
moment. Or is it ? It turns out that the proof is nearly �nished since Euler then
recalled from equation (1.4.15) that

1

2
cot

(
1

2
u

)
=

1

u
− α2u+ α4u

3 − α6u
5 + α8u

7 − α10u
9 + . . .
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Replacing 1
2
u with πu yields the new equation

1

2
cot(πu) =

1

2πu
− 2α2πu+ 23α4π

3u3 − 25α6π
5u5 + 27α8π

7u7 − . . .

and multiplying both sides by π
u
gives

π

2u
cot(πu) =

1

2u2
− 2α2π

2 + 23α4π
4u2 − 25α6π

6u4 + 27α8π
8u6 − . . .

By rearranging this last equation, Euler obtained

1

2u2
− π

2u
cot(πu) = 2α2π

2 − 23α4π
4u2 + 25α6π

6u4 − 27α8π
8u6 + . . . (1.4.29)

Finally, by comparing the coe�cients of both series in equations (1.4.28) and (1.4.29),
Euler concluded with the following equations:

1 +
1

22
+

1

32
+

1

42
+ . . . = +2α2π

2

1 +
1

24
+

1

34
+

1

44
+ . . . = −23α4π

4

1 +
1

26
+

1

36
+

1

46
+ . . . = +25α6π

6

1 +
1

28
+

1

38
+

1

48
+ . . . = −27α8π

8

Using the new Bernoulli numbers notation and a more modern notation, we can rewrite
this general formula as follows:

∞∑
n=1

1

n2k
= (−1)k+12

2k−1B2k

(2k)!
π2k. (1.4.30)

This formula is one of Euler's most celebrated result. It really encapsulates the idea
that not only did Euler solve the Basel Problem, but also solved it for all exponents
that are even powers and recognized the pattern to generate a general formula. This
result is probably beyond what anyone could have expected. Notice that by plugging-in
k = 1, we indeed get that the sum of the reciprocals of the squares is equal to π2

6
. It

follows that up to this point, this is the third proof of Euler's identity where the �rst
one is the one presented in section 1.2, the second one is the one presented in Exercise
1.2.3, and the third one is the special case k = 1 of equation (1.4.30).

Let's play a little bit with this general formula. First, using the fact that Euler
proved that the B2k's have alternating signs, we can remove the factor of (−1)k+1 by
rewriting the equation as follows:

∞∑
n=1

1

n2k
=

22k−1|B2k|
(2k)!

π2k. (1.4.31)
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Moreover, if we use back the αn's instead of the Bn's, we get

∞∑
n=1

1

n2k
= 22k−1|α2k|π2k. (1.4.32)

Finally, to make the formula even more simple, we can rewrite it as follows:

∞∑
n=1

1

n2k
=

1

2
|α2k|(2π)2k. (1.4.33)

Again, unexpectedly, it follows that the pattern behind the values of the sum of the
reciprocals of the even powers is the same as the sequence of α2k's or as the B2k's.
Thus, this is another hint pointing to the fact that the Bernoulli numbers deserve the
greatest attention.

Before concluding this section, there is one last thing that should be mentioned
about this formula: what about the odd exponents ? By looking at equation (1.4.33),
it is tempting to generalize it to the following even more general formula:

∞∑
n=1

1

nk
=

1

2
|αk|(2π)k

However, this is unfortunately impossible since for all odd values of k ≥ 3, we have that
αk = 0 and so it would imply that

∞∑
n=1

1

nk
= 0.

Therefore, Euler was again not able to solve the Basel Problem for the odd exponents.
Fortunately, Euler didn't stop his work on these series. The next and �nal section of
this chapter will explore some of Euler's latest contributions to this subject.

Exercises

Exercise 1.4.1. Euler proved that the odd αn's are all zero, except for α1, by showing
that if the following ratio is to be expanded as a series:

1 + u2

2·4 +
u4

2·4·6·8 + . . .

1 + u2

4·6 +
u4

4·6·8·10 + . . .
= c0 + c1u+ c2u

2 + c3u
3 + . . . ,

then all the odd terms on the right hand side are zero. This exercise outlines a proof
that Euler could have given.

(a) Multiply by the denominator of the ratio on both sides of the equation and expand
the product of the two series on the right hand side.
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(b) Compare the coe�cients one-by-one on both sides of the equation and conclude
that all odd coe�cients must be zero.

Exercise 1.4.2. To show that the function V (u)− u
2
only has even powers of u in its

series expansion, Euler wrote it as a ratio of two series with only even powers and then
stated that the ratio of two series with only even powers must also be written as a series
with only even powers. This exercise outlines an easier and more general proof that is
standard today.

(a) Show that if f(u) is a function that satis�es f(−u) = f(u), then its series
expansion must only contain even powers of x.

(b) If we let g(u) = V (u)− u
2
, then show that g(−u) = g(u).

(c) Deduce that V (u)− u
2
only has even powers of u in its series expansion.

Exercise 1.4.3. From the following equation:

a0 + a2x
2 + a4x

4 + a6x
6 + . . .

b0 + b2x
2 + b4x

4 + b6x
6 + . . .

= c0 + c2x
2 + c4x

4 + c6x
6 + . . . ,

deduce that

a0 − a2x
2 + a4x

4 − a6x
6 + . . .

b0 − b2x
2 + b4x

4 − b6x
6 + . . .

= c0 − c2x
2 + c4x

4 − c6x
6 + . . . ,

using techniques similar to Exercise 1.4.1. [Hint: Find a recursive formula for the cn's
in both cases and relate the two formulas.]

Exercise 1.4.4. Show that αm = Bm/m! for all m ≥ 0 using Euler's Summation
Formula by taking the function f(x) = xm and looking at the coe�cient in front of x
in the resulting polynomial expression of S(x).

Exercise 1.4.5. Given two positive sequences an and bn, if the limit of their ratio is
equal to 1, then we say that they are equivalent and we denote it by an ∼ bn. Using
Euler's general formula (1.4.30) and its reformulations, prove the following equivalences:

(a) |B2n| ∼ 2(2n)!/(2π)2n

(b) |α2n| ∼ 2/(2π)2n

Exercise 1.4.6. Prove that the sequence (|B2n|)n diverges to in�nity and that the
sequence (αn)n converges to 0 as n goes to in�nity.
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1.5 The Odd Number Problem

It seems like there is not much left to be discovered for Euler. He not only solved the
Basel Problem, but solved it for all even numbers (section 1.2), created a link between
these series and the prime numbers (section 1.3), and even found a link between the
values of these series and the coe�cients of the formula he used in the �rst place to
approximate these numbers (section 1.1 and section 1.4). But looking back at these
results, there is one clear missing piece: what is the value of the series

1 +
1

2n
+

1

3n
+

1

4n
+

1

5n
+ . . .

when n is an odd number ? Since the very begining of Euler's work on these series, he
tried solving this problem. In section 1.1, he approximated the series of the reciprocals
of the squares very precisely but also did the same for the series of the reciprocals of
the cubes:

1 +
1

23
+

1

33
+

1

43
+

1

53
+ · · · = 1.202056903159594

When solving the Basel Problem in section 1.2, he solved it for all even powers of n
with one general and powerful trick which turned out to be ine�ective for odd values
of n. He was still able to obtain the following series:

1− 1

33
+

1

53
− 1

73
+

1

93
− · · · = π3

32
.

When establishing his product formula (1.3.5) in section 1.3, Euler obtained the equation

1 +
1

23
+

1

33
+

1

43
+

1

53
+ · · · = 23

23 − 1
· 33

33 − 1
· 53

53 − 1
· 73

73 − 1
· ··

which is not useful for �nding the exact value of the series of the reciprocals of the
cubes. Finally, when discovering that the Bernoulli numbers encode the values of the
series associated with even values of n in section 1.4, he was unable to generalize this
result since he proved himself that the Bernoulli numbers are zero for all odd values
of n ≥ 3. In each of the articles containing these results, Euler always mentions that
unfortunately, none of his e�orts were able to lead him to the value of the series where
n is odd.

Euler attempted to �nd the value of the series of the reciprocals of the cubes way
more times than just the ones presented above. For example, in his 44 pages long
article De seriebus quibusdam considerationes [14], written in 1739 and published in
1750, Euler tries everything he can to �nd the value of this series. This article contains
most of Euler's results presented in section 1.4, but at that time, Euler didn't notice
that the numbers he was studying were the Bernoulli numbers. In the article, Euler
manages to �nd many surprising equivalent expressions of the sum of the reciprocals of
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the cubes such as the following one:

1 +
1

23
+

1

33
+

1

43
+ · · · = π2

6
ln(2)− 1

22

(
1

2 · 2

)
− 1

32

(
1

2 · 2
+

1 · 3
2 · 4 · 4

)
− 1

42

(
1

2 · 2
+

1 · 3
2 · 4 · 4

+
1 · 3 · 5

2 · 4 · 6 · 6

)
− 1

52

(
1

2 · 2
+

1 · 3
2 · 4 · 4

+
1 · 3 · 5

2 · 4 · 6 · 6
+

1 · 3 · 5 · 7
2 · 4 · 6 · 8 · 8

)
etc...

However, despite all of his e�orts, the article ends with the following (very sad) paragraph
which probably captures Euler's feeling after searching this value for 10 years.

But because, no matter how we transform this series, we are not able to
reduce it to a simple series, whose sum is known, we stop our attempts
here, contented by these many expressions equivalent to the propounded
series 1− 1

23
+ 1

32
− 1

43
+ 1

52
− etc. 3

However, this was not Euler's �nal attempt, there is another attempt that really
deserves our attention. In his article Remarques sur un beau rapport entre les séries
des puissances tant directes que réciproques [15], written in 1749 and published in 1768,
Euler �nds a curious formula which will turn out to have a great importance in the
study of L-functions. Let's take a look at this article.

On Divergent Series

First, let's recall that the alternating and non-alternating series of the reciprocals of
the nth powers are related by this equation:

1 +
1

2n
+

1

3n
+

1

4n
+ · · · = 2n−1

2n−1 − 1

(
1− 1

2n
+

1

3n
− 1

4n
+ . . .

)
. (1.5.1)

Therefore, �nding the series on the left hand side is equivalent to �nding the series on
the right hand side. This explains why Euler will study series of the following form in
his article:

1

1n
− 1

2n
+

1

3n
− 1

4n
+

1

5n
− 1

6n
+ . . .

which he will call series of the �rst species. Curiously, he will then de�ne series of the
second species to be the series of the form

1n − 2n + 3n − 4n + 5n − 6n + . . .

3This translation was made by Alexander Aycock.
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This is surprising because the series of the second species are obviously divergent
(assuming n to be positive). But Euler didn't simply assume that these series could be
manipulated as if they were convergent, he knew that it would lead to some contradictions.
In his article De seriebus divergentibus [18] written in 1746 and published in 1760, the
�rst 12 sections are precisely dedicated to making sense of diverging series and the values
that can be assigned to these series. Without going into the details of this paper, Euler's
conclusion is that the sum of a series can be de�ned as the �nite expression from which
the series is generated. For example, since the series

1 + x+ x2 + x3 + x4 + x5 + . . .

is generated by the �nite expression

1

1− x
,

then by plugging-in x = −1, Euler concluded that

1− 1 + 1− 1 + 1− 1 + · · · = 1

2
.

However, he also raised an important matter: by plugging-in x = 2, he obtained

1 + 2 + 4 + 8 + 16 + 32 + · · · = −1

which seems to contradict the laws of mathematics since one can never obtain a negative
value by adding positive quantities. He mentioned that some mathematicians made
sense of this using the following argument: the sequence

1

4
,

1

3
,

1

2
,

1

1
,

1

0
,

1

−1
,

1

−2
,

1

−3
,

1

−4
, etc

has increasing positive terms and also increasing negative terms, and so if this sequence
is seen as being increasing, then we obtain the inequality −1

2
> ∞ which explains the

equation above. Thus, the negative numbers would be the numbers greater than ∞
and smaller than 0 while the positive numbers are the numbers greater than 0 and
smaller than ∞. Visually, this means that we can visualize the real numbers not as
an in�nite straight line but as a circle (Figure 1.6). But Euler rejected this argument
since, according to him, it would imply that −1 behaves di�erently if it is obatined as
(a+ 1)− a or as 1

−1
. Therefore, Euler would only consider alternating diverging series

to avoid these di�culties. This also explains why Euler focuses on alternating series in
his 1749 article.

Returning to the main article, Euler considered the equation

1− x+ x2 − x3 + x4 − x5 + · · · = 1

1 + x
,
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1

∞

-1

0

Figure 1.6: Circle representation of the real numbers

from which he obtained the following ones by successively multiplying both sides by x
and taking the derivative:

1− x+ x2 − x3 + . . . =
1

1 + x
,

1− 2x+ 3x2 − 4x3 + . . . =
1

(1 + x)2
,

1− 22x+ 32x2 − 42x3 + . . . =
1− x

(1 + x)3
,

1− 23x+ 33x2 − 43x3 + . . . =
1− 4x+ x2

(1 + x)4
,

1− 24x+ 34x2 − 44x3 + . . . =
1− 11x+ 11x2 − x3

(1 + x)5
,

1− 25x+ 35x2 − 45x3 + . . . =
1− 26x+ 66x2 − 26x3 + x4

(1 + x)6
.

Hence, by his study of diverging series, he obtained the following values for the series
of the second species by taking x = 1:

1− 20 + 30 − 40 + 50 − 60 + . . . =
1

2
,

1− 21 + 31 − 41 + 51 − 61 + . . . =
1

4
,

1− 22 + 32 − 42 + 52 − 62 + . . . = 0,

1− 23 + 33 − 43 + 53 − 63 + . . . = − 2

16
,

1− 24 + 34 − 44 + 54 − 64 + . . . = 0,

1− 25 + 35 − 45 + 55 − 65 + . . . = +
16

64
,

1− 26 + 36 − 46 + 56 − 66 + . . . = 0,

1− 27 + 37 − 47 + 57 − 67 + . . . = −272

256
.
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By looking at these values, we can clearly recognize the pattern of the Bernoulli numbers
in the signs and the zeros of the sequence generated by these values. But to prove this,
Euler would have to use his summation formula (section 1.1) in a new way.

The In�nite Summation Formula

Recall that at �rst, Euler's summation formula was developed to interpolate the sequence
of partial sums of a general function. In other words, it interpolates the function de�ned
by

f(a) + f(a+ b) + f(a+ 2b) + f(a+ 3b) + · · ·+ f(x)

where a and b are two numbers (b is assumed to be positive). However, Euler would
now focus on a new problem: extending the function

f(x)− f(x+ a) + f(x+ 2)− f(x+ 3) + f(x+ 4)− . . .

where the sum is in�nite. This time, the variable x is not related to the number of terms
in the summation but indicates the value of the �rst index. This seemingly distinct
problem will turn out to be really similar to the original one.

First, Euler would let

S(x) = f(x) + f(x+ a) + f(x+ 2) + f(x+ 3) + . . .

and use Taylor's formula (Equation (1.1.8)) to obtain

S(x+ a) = S(x) +
adS

1dx
+

a2ddS

1 · 2dx2
+

a3d3S

1 · 2 · 3dx3
+

a4d4S

1 · 2 · 3 · 4dx4
+ . . .

from which he obtained

−f(x) =
adS

1dx
+

a2ddS

1 · 2dx2
+

a3d3S

1 · 2 · 3dx3
+

a4d4S

1 · 2 · 3 · 4dx4
+ . . . (1.5.2)

by using the fact that S(x + a) − S(x) = −f(x) from the de�nition of S(x). Next, in
view of inverting equation (1.5.2), he wrote

dS

dx
= c0f(x) + c1

df

dx
+ c2

d2f

dx2
+ c3

d3f

dx3
+ . . . (1.5.3)

By plugging the previous equation into equation (1.5.2), he obtained

−f(x) =
a

1

(
c0f(x) + c1

df

dx
+ c2

d2f

dx2
+ c3

d3f

dx3
++ . . .

)
+

a2

2

(
c0
df

dx
+ c1

d2f

dx2
+ c2

d3f

dx3
+ . . .

)
+

a3

6

(
c0
d2f

dx2
+ c1

d3f

dx3
+ . . .

)
+

a4

24

(
c0
d3f

dx3
+ . . .

)
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which he rewrote as

−f(x) =
ac0
1

f(x)

+

(
ac1
1

+
a2c0
2

)
df

dx

+

(
ac2
1

+
a2c1
2

+
a3c0
6

)
d2f

dx2

+

(
ac3
1

+
a2c2
2

+
a3c1
6

+
a4c0
24

)
d3f

dx3

+ . . .

Next, by comparing the coe�cients in front of the derivatives of f on both sides, Euler
obtained the following equations:

c0 = −1

a

c1 = −ac0
2

c2 = −ac1
2

− a2c0
6

c3 = −ac2
2

− a2c1
6

− a3c0
24

which he used to get

c0 = −1

a
, c1 =

1

2
, c2 = − a

12
, c3 = 0, c4 =

a4

720
, c5 = 0, etc...

Then, Euler noticed that the sequence of cn's could be written in terms of the sequence
of αn's found for its original summation formula (section 1.1): cn = (−a)n−1αn for all
n ≥ 0 (Exercise 1.5.2). Thus, plugging everything in equation (1.5.3) and integrating
both sides gives:

f(x) + f(x+ a) + f(x+ 2a) + f(x+ 3a) + . . .

= −α0

a

∫
f(x)dx+ α1f(x)−

aα2df

dx
+

a2α3d
2f

dx2
− a3α4d

3f

dx3
+ . . .

From this equation, Euler replaced a with 2a and multiplied both sides by 2 to obtain

2f(x) + 2f(x+ 2a) + 2f(x+ 4a) + 2f(x+ 6a) + . . .

= −α0

a

∫
f(x)dx+ 2α1f(x)−

22aα2df

dx
+

23a2α3d
2f

dx2
− 24a3α4d

3f

dx3
+ . . .

Finally, he subtracted from this equation the one above to obtain the desired formula:
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f(x)− f(x+ a) + f(x+ 2a)− f(x+ 3a) + . . .

= α1f(x)−
(22 − 1)aα2df

dx
+

(23 − 1)a2α3d
2f

dx2
− (24 − 1)a3α4d

3f

dx3
+ . . .

From this general formula, he considered the special case where f(x) = xm and a = 1:

xm − (x+ 1)m + (x+ 2)m − (x+ 3)m + . . .

= α1x
m−m(22−1)α2x

m−1+m(m−1)(23−1)α3x
m−2−m(m−1)(m−2)(24−1)α4x

m−3+. . .

Notice that the series at the bottom in the above equation has �nitely many terms since
all the terms will vanish after the �rst m + 1 terms. To get the values of the series of
the second species, Euler noticed that instead of plugging x = 1, it is more convenient
and way easier to plug-in x = 0 since the series becomes

0m − 1m + 2m − 3m + 4m − 5m + . . .

and only the constant term in the bottom polynomial will be non-zero. From these
observations and by multiplying both sides of the equation by −1 when m > 0, Euler
obtained the following values

1− 20 + 30 − 40 + 50 − 60 + . . . = α1,

1− 21 + 31 − 41 + 51 − 61 + . . . = +1 · (22 − 1)α2,

1− 22 + 32 − 42 + 52 − 62 + . . . = −1 · 2 · (23 − 1)α3,

1− 23 + 33 − 43 + 53 − 63 + . . . = +1 · 2 · 3 · (24 − 1)α4,

1− 24 + 34 − 44 + 54 − 64 + . . . = −1 · 2 · 3 · 4 · (25 − 1)α5,

1− 25 + 35 − 45 + 55 − 65 + . . . = +1 · 2 · 3 · 4 · 5 · (26 − 1)α6,

1− 26 + 36 − 46 + 56 − 66 + . . . = −1 · 2 · 3 · 4 · 5 · 6 · (27 − 1)α7,

1− 27 + 37 − 47 + 57 − 67 + . . . = +1 · 2 · 3 · 4 · 5 · 6 · 7 · (28 − 1)α8

which are consistent with the values found above. Using the fact that αn = 0 for all odd
integers n ≥ 3, we can remove the minus signs on the right hand side of the previous
equations to obtain

1− 20 + 30 − 40 + 50 − 60 + . . . = 1 · (21 − 1)α1,

1− 21 + 31 − 41 + 51 − 61 + . . . = 1 · (22 − 1)α2,

1− 22 + 32 − 42 + 52 − 62 + . . . = 1 · 2 · (23 − 1)α3,

1− 23 + 33 − 43 + 53 − 63 + . . . = 1 · 2 · 3 · (24 − 1)α4,

1− 24 + 34 − 44 + 54 − 64 + . . . = 1 · 2 · 3 · 4 · (25 − 1)α5,

1− 25 + 35 − 45 + 55 − 65 + . . . = 1 · 2 · 3 · 4 · 5 · (26 − 1)α6,

1− 26 + 36 − 46 + 56 − 66 + . . . = 1 · 2 · 3 · 4 · 5 · 6 · (27 − 1)α7,

1− 27 + 37 − 47 + 57 − 67 + . . . = 1 · 2 · 3 · 4 · 5 · 6 · 7 · (28 − 1)α8
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which makes the pattern even clearer. Using a modern notation, we can rewrite these
equations as follows:

∞∑
n=1

(−1)n+1nm = m!(2m+1 − 1)αm+1. (1.5.4)

Therefore, using his in�nite summation formula, Euler was able to �nd the general
formula for the series of the second species. Again, this general formula involves the
αn's which are closely related to the Bernoulli numbers.

A Curious Ratio Between Two Series

Euler recalled the general formula for the series of the �rst species he found before
(section 1.4) which also involves the αn's:

1 +
1

22
+

1

32
+

1

42
+ . . . = +2α2π

2

1 +
1

24
+

1

34
+

1

44
+ . . . = −23α4π

4

1 +
1

26
+

1

36
+

1

46
+ . . . = +25α6π

6

1 +
1

28
+

1

38
+

1

48
+ . . . = −27α8π

8

Then, using the fact that αn = 0 for all odd integers n ≥ 3 and the fact that the sum

1

1n
+

1

2n
+

1

3n
+

1

4n
+ ...

is nonzero for all positive integers n, he obtained the following ratios by dividing the
series of the second species by the corresponding series of the �rst species:

1 − 2 + 3 − 4 + 5 − 6 + &c.

1− 1

22
+

1

32
− 1

42
+

1

52
− 1

62
+&c.

= +
1(22 − 1)

(2− 1)π2

1− 22 + 32 − 42 + 52 − 62 +&c.

1− 1

23
+

1

33
− 1

43
+

1

53
− 1

63
+&c.

= 0

1− 23 + 33 − 43 + 53 − 63 +&c.

1− 1

24
+

1

34
− 1

44
+

1

54
− 1

64
+&c.

= −1 · 2 · 3(24 − 1)

(23 − 1)π4

1− 24 + 34 − 44 + 54 − 64 +&c.

1− 1

25
+

1

35
− 1

45
+

1

55
− 1

65
+&c.

= 0

1− 25 + 35 − 45 + 55 − 65 +&c.

1− 1

26
+

1

36
− 1

46
+

1

56
− 1

66
+&c.

= +
1 · 2 · ·5(26 − 1)

(25 − 1)π6
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in which the αn's cancel out. From this, Euler rewrote these equations in the following
single formula:

1− 2n−1 + 3n−1 − 4n−1 + ...

1 − 1

2n
+

1

3n
− 1

4n
+ ...

=
−1 · 2 · · · (n− 1)(2n − 1)

(2n−1 − 1)πn
cos

(nπ
2

)
(1.5.5)

for all integers n ≥ 2. This formula seems strange but it is really just a mix between
the two general formulas Euler found before. Moreover, the additional cosine factor is
just here to make the signs alternate and be equal to 0 when n is odd. However, Euler's
surprising observation is that equation (1.5.5) is true not just for the integers n ≥ 2 but
for all values of n (in the sense that it holds for all real numbers n). This is surprising
because for n = 1, we know from earlier that

1− 1 + 1− 1 + 1− 1 + ... =
1

2

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ . . . = ln 2

and so the left hand side of equation (1.5.5) becomes

1− 1 + 1− 1 + 1− 1 + ...

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ . . .

=
1

2 ln 2

which seems to contradict Euler's observation since the right hand of the equation
involves no natural logarithm. When evaluating the right hand side of equation (1.5.5)
at n = 1, we get that 1 · 2 · · · (n− 1) = 1 (since 0! = 1), 2n − 1 = 1 and so we are only
left with −1/π multiplied by

cos
(
nπ
2

)
2n−1 − 1

in which both the numerator and the denominator vanish. Euler then considered the
variable n to be continuous and stated that this ratio is equal to the ratio of the
di�erentials of the numerator and denominator (which is now known as l'Hopital's
Rule). Since the di�erential of the numerator is −πdn

2
sin(nπ

2
) and the di�erential of the

denominator is 2n−1dn ln 2, then at n = 1 we obtain

− 1

π

cos
(
nπ
2

)
2n−1 − 1

= − 1

π

−π
2
sin(nπ

2
)

2n−1 ln 2
=

1

2 ln 2
.

Therefore, Euler proved that his formula holds for the case n = 1. In a similar way, he
also proved that it also holds for the case n = 0 (Exercise 1.5.4).

For Euler, proving that the formula holds for all integers n ≥ 2, as well as for the
non-trivial cases n = 0 and n = 1 is already a strong proof that his observation is true
since, as he said in his article, it seems impossible for a false supposition to lead to such
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proofs. But even after these proofs, he was still willing to give more proofs that his
observation is true. Here, it is important to notice that during Euler's time, a proof
was simply an argument in favor of a conjecture. Thus, from Euler's point of view, he
already gave two proofs of his observation with the cases n = 0 and n = 1.

To make his formula even more certain, Euler then proved that it also holds for
the negative integers. To do so, he let n be a negative integer and de�ned the positive
integer m = −(n− 1). Since the formula holds for the integer m, then we have

1− 2−n + 3−n − 4−n + ...

1− 2n−1 + 3n−1 − 4n−1 + ...
=

−1 · 2 · · · (−n)(21−n − 1)

(2−n − 1)π1−n
cos

(
(1− n)π

2

)
.

Next, Euler denoted by [λ] the product 1 · 2 · 3 · · · λ (which we now denote by λ!) and
recalled the following formula which he proved before:

[λ][−λ] =
πλ

sin(πλ)
. (1.5.6)

This formula is strange since the product 1 · 2 · 3 · · · (−λ) doesn't intuitively make
sense when λ is a positive integer. However, a few years before this paper, Euler was
able to interpolate the function [λ] so that λ can be any number, not just the positive
integers. Therefore, equation (1.5.6) is valid in the sense of Euler's interpolation. More
informations about interpolations of the function [λ] in Appendix B.

In equation (1.5.6), Euler took λ = n to obtain

1 · 2 · 3 · · · (−n) = [−n] =
πn

[n] sin(πn)
=

π

1 · 2 · · · (n− 1) sin(πn)

which he substituted in the equation above to get

1− 2−n + 3−n − 4−n + ...

1− 2n−1 + 3n−1 − 4n−1 + ...
= − (21−n − 1)πn

1 · 2 · · · (n− 1)(2−n − 1) sin(πn)
sin

(nπ
2

)
using the fact that cos( (1−n)π

2
) = sin(nπ

2
). Then, he simpli�ed the expression on the

right hand side by multiplying the numerator and the denominator by 2n and by using
the fact that 2 sin(nπ

2
) cos(nπ

2
) = sin(nπ) to obtain

1− 2−n + 3−n − 4−n + ...

1− 2n−1 + 3n−1 − 4n−1 + ...
= − (2n−1 − 1)πn

1 · 2 · · · (n− 1)(2n − 1) cos
(
nπ
2

) .
Finally, taking the inverse on both sides gives the equation

1− 2n−1 + 3n−1 − 4n−1 + ...

1− 2−n + 3−n − 4−n + ...
=

−1 · 2 · · · (n− 1)(2n − 1)

(2n−1 − 1)πn
cos

(nπ
2

)
which is precisely the desired result. Therefore, the formula is true for all (positive and
negative) integers.
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But there is still one last case that Euler considered: the case n = 1
2
. If we plug-in

this value of n in the left hand side of equation (1.5.5), we get

1− 1√
2
+ 1√

3
− 1√

4
+ 1√

5
− 1√

6
+ ...

1− 1√
2
+ 1√

3
− 1√

4
+ 1√

5
− 1√

6
+ ...

= 1.

For the right hand side of the equation, we obtain

−1 · 2 · · · (n− 1)(2n − 1)

(2n−1 − 1)πn
cos

(nπ
2

)
= −

[−1
2
](
√
2− 1)

( 1√
2
− 1)

√
π

cos
(π
4

)
=

[−1
2
]

√
π

= 1

where the last equality comes from the fact that Euler proved before that [−1
2
] =

√
π

(Appendix B). Therefore, both sides of equation (1.5.5) are still equal if we replace n
with 1

2
. Hence, for Euler, the formula is now true with the highest degree of certainty

(using his words) since it holds not only for the integers but also for some fractions.

The Odd Powers

But Euler didn't end his paper on these proofs, he used his brand new formula to attack
the original probem of �nding the sum of the reciprocals of the integers raised to an
odd power. As we have seen earlier (equation (1.5.1)), this problem is equivalent to
�nding the value of the series

1− 1

2n
+

1

3n
− 1

4n
+

1

5n
− 1

6n
+ ...

where n is an odd number. Thus, he rewrote his ratio formula as follows:

1− 1

22λ+1
+

1

32λ+1
− 1

42λ+1
+ . . .

=
(22λ − 1)π2λ+1

−1 · 2 · · · (2λ)(22λ+1 − 1)
· 1− 22λ + 32λ − 42λ + ...

cos( (2λ+1)π
2

)
.

However, he quickly made the observation that both the numerator and the denominator
of the second factor on the bottom of the previous equation are zero. Therefore, after
substituting this ratio with the ratio of the respective di�erentials (l'Hopital's Rule),
he obtained

1− 1

22λ+1
+

1

32λ+1
− 1

42λ+1
+ . . .

=
2(22λ − 1)π2λ

1 · 2 · · · (2λ)(22λ+1 − 1)
· 1 ln 1− 22λ ln 2 + 32λ ln 3− 42λ ln 4 + ...

cos(λπ)
.

using the identity cos( (2λ+1)π
2

) = − sin(λπ). Therefore, the problem is reduced to the
one of �nding the value of the series

1 ln 1− 22λ ln 2 + 32λ ln 3− 42λ ln 4 + ...
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which seems harder. Indeed, Euler said in his article that he can think of no method
that would help him �nd the value of this series.

Continuing on this road, he considered the sum

1 +
1

3n
+

1

5n
+

1

7n
+ . . .

which is related to the alternating sum studied above by the equation

1 +
1

3n
+

1

5n
+

1

7n
+ · · · = 2n − 1

2(2n−1 − 1)

(
1− 1

2n
+

1

3n
− 1

4n
+ . . .

)
.

Hence, �nding the sum on the left hand side is equivalent to �nding the sum on the
right hand side. From the previous equation, he was able to rewrite the result above as
follows:

1 +
1

32λ+1
+

1

52λ+1
+

1

72λ+1
+ . . .

= − π2λ

1 · 2 · · · (2λ) cos(λπ)
· (22λ ln 2− 32λ ln 3 + 42λ ln 4− ...)

which makes it simpler but still inaccessible.
After that, Euler stated without proof a similar formula as the one he proved above:

1− 3n−1 + 5n−1 − 7n−1 + . . .

1− 3−n + 5−n − 7−n + . . .
=

1 · 2 · 3 · · · (n− 1)2n

πn
sin

(nπ
2

)
. (1.5.7)

From this formula, in the same way as above, he was able to �nd

1− 1

32λ
+

1

52λ
− 1

72λ
+ · · · = −π2λ−1(32λ−1 ln 3− 52λ−1 ln 5 + 72λ−1 ln 7− . . . )

1 · 2 · 3 · · · (2λ− 1)22λ−1 cos(λπ)

but unfortunately, he was unable to link this result to the previous ones in a way that
would help him determine the sum of the reciprocals of the cubes or any other odd
power. Again, Euler was unable to determine these mysterious values. These last
formulas conclude Euler's article.

Compared to the other papers that were presented in this chapter, it seems that the
one presented in this section is disapointing in the sense that it shows Euler failing his
goal of �nding the sum of the reciprocals of the cubes and other odd powers. However,
even though the paper ends on a failure, it still shows how creative and persistent Euler
was. Moreover, it turns out that the formulas found in this article will have a great
importance in the future. These formulas will be brought back to the main stage more
than a century later by another master of mathematics that will also have a complete
chapter dedicated to him. But for the moment, lets keep our focus on Euler.
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Euler's Legacy

The previously presented paper was not Euler's last attempt in �nding the sum of the
reciprocals of the nth powers with n an odd integer. In 1772, in his article Exercitationes
analyticae [16] published in 1773, Euler proved that

1 +
1

33
+

1

53
+

1

73
+ · · · = π2

4
ln 2 +

∫ π
2

0

φ ln(sin(φ))dφ

but this was not enough since he was unable to �nd a closed form for the integral on
the right hand side of the equation. It turns out that Euler never found the sum of the
reciprocals of the cubes. He died in 1783, in Saint Petersburg at the age of 76. This
year marked the end of one of the greatest mathematician of all time. There is no �eld
of mathematics in which he made no major contributions.

After reading all of these papers, it should be clear that there is one trick that
Euler used extensively and more than any others. This trick is simply the fact that if
two power series are equal, then the coe�cients in front of the powers of the variable
must all be equal. This is simply another way of stating that a function has a unique
representation as a power series. This property is very powerful since it helps obtaining
in�nitely many equations from one simpler equation. Let's take a quick look at a proof
from Euler that uses this trick. First, de�ne the function

P (x) = (1 + x)(1 + x2)(1 + x4)(1 + x8) . . .

which can be expanded as the following power series:

P (x) = 1 + αx+ βx2 + γx3 + δx4 + . . .

If we expand the product in the de�nition of P (x), we get that α is the number of ways
we can write 1 as a sum of distinct powers of 2, β is the number of ways we can write 2
as a sum of distinct powers of 2, and so on. From the de�nition of P (x), we have that

P (x2) = (1 + x2)(1 + x4)(1 + x8)(1 + x16)... =
P (x)

1 + x

and so

1 + αx+ βx2 + γx3 + δx4 + . . . = (1 + x)P (x2)

= (1 + x)(1 + αx2 + βx4 + γx6 + δx8 + . . . )

= 1 + x+ αx2 + αx3 + βx4 + βx5 + ...

Equating both sides of the equation leads to an equality between two series that gives
us

α = 1, β = α, β = γ, etc...

and so all the coe�cients in the series expansion of P (x) are equal to one. Therefore,
every positive integer can be written as a sum of distinct powers of 2 in a unique way.
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This is Euler's way of proving that every integer has a unique base-2 representation.
It is clear now that Euler understood really well the full power of this simple property
of power series. When we see how Euler treated power series as one of the most
fundamental object in mathematics, we understand why Joseph Louis Lagrange (1736
- 1813), tried to put series as the foundations of analysis (instead of limits introduced
by Cauchy).

Concerning the sum of the reciprocals of the cubes (and any other odd power), it
is still an open problem. No one today has found a closed formula for this series. In
trying to attack this problem, Euler discovered some of the most curious and surprising
formulas. For more informations about the sum of the reciprocals of the cubes, I
recommend the book In Pursuit of Zeta-3 [22] which focuses on this series, and how
di�erent mathematician tried to attack the problem.

As it was said earlier, Euler's contributions in mathematics are countless, and this
chapter only focuses on a very tiny bit of Euler's full work. To get a broader image of
Euler's contributions in mathematics, in strongly recommend the excellent book Euler:
The Master of Us All [3] by William Dunham.

Exercises

Exercise 1.5.1 (Eulerian Polynomials). In the rational function representation of the
series 1m−2mx+3mx2−4mx3+ . . . , denote by Pn(x) the sequence of polynomials found
in the numerators. Find a formula for Pn+1(x) in terms of Pn(x) and P ′

n(x).

Exercise 1.5.2. Prove that cn = (−a)n−1αn holds for all n ≥ 0 by �nding the
generating function of the cn's.

Exercise 1.5.3. This exercise outlines a little proof that Euler could have given of a
general formula for the series of the mth powers.

(a) Rewrite equation (1.5.4) in terms of the Bn's instead of the αn's.

(b) Euler only considered alternating divergent series. By ignoring the divergence of
the series and using equation (1.5.1), �nd a general formula for the sum 1m+2m+
3m + 4m + ...

(c) According to this formula, what is the value of 1 + 2 + 3 + 4 + 5 + . . . ?

Exercise 1.5.4. Prove that equation (1.5.5) holds for n = 0 using the same method as
Euler for the case n = 1. [Hint: rewrite 1 · 2 · · · (n− 1) as 1

n
· 1 · 2 · · · n].

Exercise 1.5.5. Prove equation (1.5.7) for all integers n ≥ 1 in the same way as Euler
did when he proved equation (1.5.5).

Exercise 1.5.6. Prove that if two power series are equal, then all of the coe�cients
are equal using induction.



Chapter 2

Dirichlet's Theorem

This part is not written yet.

TODO

2.1 Fourier's Theorem

2.2 Finite Fourier Analysis

2.3 ??

Theorem 2.3.1 (Dirichlet's Theorem). Given two relatively prime natural numbers a
and b, there are in�nitely many prime numbers of the form an+ b.
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Chapter 3

Riemann's 1859 Paper

This part is not written yet.

TODO

3.1 The Riemann ζ Function

3.2 The Functional Equation of the ζ Function

3.3 The Prime Counting Function π(x)

3.4 The Riemann Hypothesis
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Appendix A

The Big-O Notation

This part is not written yet.

TODO

De�nition. If f and g are real-valued functions such that

|f(x)| ≤ C|g(x)|

for some positive constants C and for all x > k where k > 0, then we say that f is
O(g).
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Appendix B

The Factorial and the Gamma

Functions

This part is not written yet.
TODO

1. Motivate the de�nition using Understanding Analysis Chapter 8 and Calculus
Gallery, chapters on Euler.

2. State and prove basic properties of the function.

3. State and prove that
πz

Π(z)Π(−z)
= sin(πz)

TODO

De�nition. The Factorial Function Π : C \ {−1,−2,−3, ...} → C is de�ned by

Π(z) =

∫ ∞

0

e−ttzdt.

De�nition. The Gamma Function Γ : C \ {−1,−2,−3, ...} → C is de�ned by

Γ(z) =

∫ ∞

0

e−ttz−1dt.
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