

A (brief) introduction into p-adic analysis

2024 Directed Reading Program

Frank Connor Samy Lahlou

What norms do we know over \mathbb{Q} ?

- Our familiar norm: $\| \ \|_{\mathbb{R}}$ denoted $| \cdot |$ or $| \cdot |_{\infty}$
- The trivial norm: $\| \|_0$

The p norm: $|x|_p$

Let p be any prime number. For $a \in \mathbb{Q}$, $ord_p(a) :=$ the greatest $m \in \mathbb{Z}$ s.t. $a \equiv 0 \mod (p^m)$.

$$|x|_{\rho} = \left\{ \begin{array}{cc} (1/\rho)^{ord_{\rho}(x)} & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{array} \right\}$$
(1)

Ostrowski's Theorem [Ost. 1916]

Every non-trivial norm on \mathbb{Q} is equivalent to $| |_p$ for some prime p or for $p = \infty$.

• $\forall p \ \mathbb{Q}$ is not complete with respect to $| \ |_{p}$.¹

Just like we can complete Q to R with respect to | · |. We can complete Q with respect to | |_p. We call this new field Q_p

\mathbb{Q}_p

The fields formed by the completions of \mathbb{Q} with respect to $| \cdot |_p$

¹Indeed, consider for some $a \in \{2, 3, \dots, p-1\}(x_n) := (a^{p^n})$) which is Cauchy but not convergent.

Take $x \in \mathbb{Q}_p$ for some prime p.

One non-canonical way to represent x is in the following form:

$$x = \sum_{k=l}^{\infty} a_k p^k \qquad \forall k \ a_k \in \mathbb{Z}/p\mathbb{Z} \ l \in \mathbb{Z}$$

Examples for p = 3

$$17 = 1 * 3^{2} + 2 * 3^{1} + 2 * 3^{0}$$
$$-\frac{1}{2} = \sum_{i=0}^{\infty} 3^{i}$$

The Weird Topology of the Metric Space \mathbb{Q}_p

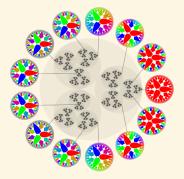


Figure: A representation of \mathbb{Q}_3 by Mel Choir (2018)

- \mathbb{Q}_p is an ultra-metric space.
- \mathbb{Q}_p is a totally disconnected topological space

Locally constant function

A function $f : X \to Y$ is called locally constant on X if every point $x \in X$ has a neighborhood U s.t. |f(U)| = 1

P-adic distribution

^{*a*} A p-adic distribution μ on X is a \mathbb{Q}_p -linear vector space homomorphism \mathbb{Q}_p -vector space of locally constant functions on X to \mathbb{Q}_p . If $f: X \to \mathbb{Q}_p$ is locally constant, instead of writing $\mu(f)$ we write $\int f\mu$

- A distribution which is bounded on a compact set (for instance \mathbb{Z}_{p}) is called a measure.
- With measures we can do analysis, specifically we can:
 - Take Riemann sums
 - Define a p-adic logarithim
 - Define a p-adic gamma function
 - Work with L functions such as the Riemannn-Zeta function

A formula for $\zeta(2k)$ $\zeta(2k) = (-1)^k \pi^{2k} \frac{2^{2k-1}}{(2k-1)!} (\frac{-B_{2k}}{2k})$

If \mathbb{Q}_p is a p-adic version of \mathbb{R} what is the p adic analogy of \mathbb{C} ?

Just like \mathbb{R} , \mathbb{Q}_p is not algebraically closed. However, while \mathbb{R} has one proper algebraic extension, \mathbb{C} , \mathbb{Q}_p has an infinite degree extension.

 \mathbb{Q}_{μ}

The infinite degree algebraic extension of \mathbb{Q}_p s.t. it is closed.

However, we lost completeness in the process.

 \mathbb{C}_{p}

The completion of $\overline{\mathbb{Q}_p}$ denoted as \mathbb{C}_p , is the smallest algebraically closed and complete field which contains \mathbb{Q}_p .

 \mathbb{C}_p is isomorphic to \mathbb{C} as a ring.

References

- N. Koblitz, *p-adic Numbers, p-adic Analysis, and Zeta Functions*, New York Heidelberg Berlin, 1984.
- F. Gouvea, p-adic Numbers, Springer Science and 2013 Business Media, 2013.

