
Deep Dive into a New
Proof of the Divergence of the Harmonic Series

Samy Lahlou

Abstract

In this paper, I present a new proof of the divergence of the Har-
monic Series, first with a calculus level of rigor, and then in a more
rigorous manner by today’s standards. I also explain why it matters
to be able to write a proof with such a level of rigor.
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1 Introduction

The Harmonic Series is a well known mathematical object defined as follows:

∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+ ...

It has been studied for centuries now. One of the key properties of the
Harmonic Series is its divergence, which was first proved by Nicole Oresme in
the 12th century. Since that time, numerous proofs were found and published.
To learn more about these different proofs, I highly recommend the article
The Harmonic Series Diverges Again and Again which was written by Steven
J. Kifowit and Terra A. Stamps [4]

In this paper, I present a new proof of the Divergence of the Harmonic
Series which I stepped upon by trying to replicate some series manipulations
linked to Ramanujan’s proof that

1 + 2 + 3 + 4 + ... = − 1

12

and applying these methods to other series. I will actually present two ver-
sions of the same proof with the difference between the two being the level
of rigor. I believe that this document is a good excuse to explain how to go
from a calculus level of rigor to a more advanced one as expected in a Real
Analysis class. The sections 3.1 and 3.2 can be skipped if you already have
a background in classical Real Analysis.

2 The Unrigorous Proof

In this section, I will present the proof in a way that most people with a basic
knowledge of series in calculus can understand. The goal is to make the idea
of the proof very clear without being constrained by the rules of rigor.

Theorem.

1 +
1

2
+

1

3
+

1

4
+ · · · = ∞

Proof. First, let’s denote by H the infinite sum we are interested in:

H = 1 +
1

2
+

1

3
+

1

4
+ . . .
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and consider the slightly modified infinte sum

L = 1− 1

2
+

1

3
− 1

4
+ . . .

Using the Alternating Series Test, we know that L converges. Moreover, we
know that L is approximately equal to 0.693. Consider now the following
manipulation:

H − L = 1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+ . . .

−
(
1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ . . .

)
= 0 + 2 · 1

2
+ 0 + 2 · 1

4
+ 0 + 2 · 1

6
+ . . .

= 1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+ . . .

= H

But this can only happen if either H = ±∞ or L = 0. Since L ̸= 0, then we
either have H = ∞ or H = −∞. Since H is positive, then H = ∞ which is
equivalent to

1 +
1

2
+

1

3
+

1

4
+ · · · = ∞

3 From Calculus to Analysis

3.1 What do we want to prove ?

In the proof appearing in the previous section, many questions arise : does
H−L = H really imply that H = ±∞ or L = 0 ? Is it allowed to manipulate
infinite series in the same way as finite sums ? What do we mean by ∞ ? Is
it a number ? How do we know that L is approximately equal to 0.693 ?

The first step towards a rigorous proof would be to define clearly the terms
we are using and state the theorems that will end up being important. But
to do so, we also need to be really precise concerning what we are trying to
prove. If the claim is ambiguous, then any proof will lack of rigor or precision
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at some point. Hence, our goal now is to define the important concepts and
mathematical objects that we are manipulating.

The main object in the theorem is the infinite sum of the reciprocals
of the natural numbers. How do we make sense of adding infinitely many
numbers together ? What do we mean by an expression of the form:

1 +
1

2
+

1

3
+

1

4
+ ...

We already know from calculus that a series is defined as a limit of a sequence.
Let’s write this more precisely.

Definition. Given a sequence (an)n of real numbers, the sequence of partial
sums of (an)n is the sequence (sn)n defined by

sn =
n∑

k=1

ak = a1 + a2 + ...+ an

for all n ∈ N. From this sequence, we define

∞∑
n=1

an = lim
n→∞

sn

the series associated with the sequence (an)n. If the limit exists, we say that
the series converges, otherwise, we say that the series diverges.

It turns out that this notion of convergence is actually the key to make our
proof rigorous. I will not prove here all the properties of limits that we know
from calculus but technically, they can all be proven using the ϵ-definition
of limits of sequences. The properties that I will use without a proof in this
document are the following:

(i) Given two convergent sequences (an)n and (bn)n of real numbers, we
have

lim
n→∞

(an ± bn) = lim
n→∞

an ± lim
n→∞

bn

(ii) Given a convergent sequence (an)n of real numbers, if m ≤ an for all
n ∈ N, then

m ≤ lim
n→∞

an
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(iii) Given two convergent series
∑∞

n=1 an and
∑∞

n=1 bn, we have

∞∑
n=1

(an ± bn) =
∞∑
n=1

an ±
∞∑
n=1

bn

However, notice that for our goal, we need to show that a series is equal
to infinity, but we only know how to deal with convergence to a real number,
what about infinity ? We can actually define in a distinct definition what
it means to go to infinity. We know that a sequence goes to infinity if it
gets arbitrarily large. However, we also know that visualy, a sequence which
alternates between arbitrarily large and arbitrarily small numbers doesn’t go
to infinity, even though technically, it has arbitrarily large terms. In other
words, a sequence that goes to infinity needs to stay arbitrarily large. Let’s
summarize what we just said in a precise definition.

Definition. Given a sequence (an)n of real numbers, we write

lim
n→∞

an = ∞

if for all M ≥ 0, there is an index N ∈ N for which an ≥ M whenever n ≥ N
and say that (an)n diverges to infinity.
Similarly, given a sequence (an)n of real numbers, we write

∞∑
n=1

an = ∞

if the sequence of partial sums of (an)n diverges to infinity.

With these definitions, we can now rephrase our claim as follows: ”The
series associated with the sequence ( 1

n
)n diverges to infinity.”

With the last definition, we now have a clear instruction for how to prove
it: we need to show that for all M ≥ 0, there exists a N ∈ N such that

n∑
k=1

1

n
≥ M

for all n ≥ N . We will actually prove in the next section a useful preliminary
result that will make our proof easier. Now that we know exactly what we
want to prove, we can move on and start to prove the preliminary results.

5



3.2 The Alternating Series Test

The most obvious theorem we used in our unrigorous proof was the Alternat-
ing Series Test. This theorem is usually mentionned in any standard calculus
class and I choose here to prove it to point out an important property of the
real numbers that we will use to prove another preliminary result. But first,
let’s define some terminology concerning sequences.

Definition (Monotonicity of sequences). Given a sequence (an)n of real num-
bers, we say that the sequence is increasing if

a1 ≤ a2 ≤ a3 ≤ ...

i.e., if an ≤ an+1 for all n ∈ N. Similarly, if we say that the sequence
is decreasing if an ≥ an+1 for all n ∈ N. In both cases, we say that the
sequence is monotone.

Definition (Bounded sequences). Given a sequence (an)n of real numbers,
we say that the sequence is bounded above if there exists a real number M
such that an ≤ M for all n ∈ N. Similarly, we say that the sequence is
bounded below if there exists a real number m such that m ≤ an for all
n ∈ N.

We can now state the Alternating Series Test. This theorem is what we
call a convergence test. It is a theorem that asserts the convergence of the
series associated with a sequence (an)n given some information about the
sequence. There are a lot of other convergence tests but we will only need
this one for our goal.

Theorem (Alternating Series Test). Given a sequence (an)n of real num-
bers, if the sequence is positive (all of its terms are positive), decreasing and
converges to zero, then the series

∞∑
n=1

(−1)n+1an = a1 − a2 + a3 − a4 + ...

converges to a real number.

As I said earlier, the proof of the AST (Alternating Series Test) will
require an important property of the real numbers. We can formulate this
property as follows.
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Theorem (Completeness of R). If a nonempty subset of R is bounded above,
then its supremum exists.

It turns out that this weird non-obvious theorem is actually equivalent
to a simpler and more useful one : the Monotone Convergence Theorem for
sequences.

Theorem (Monotone Convergence Theorem). If a sequence of real numbers
is increasing and bounded above, then it must be convergent. Similarly,
if a sequence of real numbers is decreasing and bounded below, then it is
convergent as well.

To get a more in-depth study of the Completeness of R and the equiva-
lence with the MCT (Monotone Convergence Theorem), I highly recommend
the Chapter 2 of Understanding Analysis by Stephen Abbott [1]. We can now
prove the AST.

Proof. Let (an)n be a decreasing sequence of positive real numbers that con-
verges to zero. Define (sn)n as the sequence of partial sums of ((−1)n+1an)n:

sn =
n∑

k=1

(−1)k+1ak

If we plot this new sequence, we get something that looks like

2 4 6 8 10

Graph of sn as a function of n
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The graph looks like this because to go from one term to another, we need
to alternate between adding and subtracting positive terms that get smaller
and smaller. From this graph, it is easy to see that we can split sn into two
subsequences, the even terms (in green) which correspond to the subsequence
(s2n)n and odd terms (in blue) which correspond to the subsequence (s2n−1)n.

Let’s first prove that the subsequence (s2n)n converges. For all n ∈ N,
since (an)n is decreasing, then a2n+1 − a2n+2 ≥ 0. Hence,

s2(n+1) = s2n+2

= s2n + a2n+1 − a2n+2

≥ s2n

Therefore, by definition and as we can see in the graph, the subsequence
(s2n)n is increasing. Similarly, we can prove that (s2n−1)n is decreasing.
Notice now that for all n ∈ N, using the fact that (s2n)n is increasing, we
have

s2n−1 = s2n−1 − a2n + a2n

= s2n + a2n

≥ s2n

≥ s2

so by definition, (s2n−1)n is bounded below by s2. Similarly, we can prove that
(s2n)n is bounded above by s1. Therefore, by the MCT, both subsequences
converge. In other words, there exist real numbers L1 and L2 such that

lim
n→∞

s2n−1 = L1

and
lim
n→∞

s2n = L2

But notice that

L2 − L1 = lim
n→∞

s2n − lim
n→∞

s2n−1

= lim
n→∞

(s2n − s2n−1) [by Prop. (i)]

= lim
n→∞

(−a2n)

= 0
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which implies L1 = L2. Since the odd and even terms of (sn)n converge to
L1 (and hence to L2), then it follows that (sn)n converges to L1. Therefore,
by definition, the series

∑∞
k=1(−1)k+1ak converges.

In the unrigorous proof, we used the fact that the series
∑∞

k=1
(−1)k+1

k
was

convergent and nonzero. Now that we proved the AST, let’s use it to prove
the following lemma1 which summarizes the useful informations about the

series
∑∞

k=1
(−1)k+1

k
.

Lemma 1. The series
∑∞

n=1
(−1)n+1

n
converges to a strictly positive number.

Proof. Since the sequence ( 1
n
)n is positive, decreasing and converges to zero,

then it directly follows from the AST that the series converges. Denote by

(sn)n the sequence of partial sums of the sequence ( (−1)n+1

n
)n and recall that

in the proof of the AST, we actually showed that s2 ≤ s2n−1 for all n ∈ N.
It follows from (ii) that

s2 ≤ lim
n→∞

s2n−1 =
∞∑
n=1

(−1)n+1

n

Therefore, using the fact that

s2 =
2∑

n=1

(−1)n+1

n
= 1− 1

2
> 0

we get

0 < s2 ≤
∞∑
n=1

(−1)n+1

n

which proves that the series
∑∞

n=1
(−1)n+1

n
converges to a strictly positive

number.

As I said previously, the MCT is actually really useful for proving another
result that will turn out to be really important for our goal.

Lemma 2. Let (an)n be a sequence of positive real numbers. If the series∑∞
n=1 an diverges, then

∑∞
n=1 an = ∞.

1A lemma is simply the name we give to a theorem that is intended to be used later in
a proof for another theorem.
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Proof. Let’s denote by (sn)n the sequence of partial sums of (an)n. Notice
that for all n ∈ N, we have

sn+1 = sn + an+1 ≥ sn

so (sn)n is an increasing sequence. Let M ≥ 0, by contradiction, suppose
that sn ≤ M for all n ∈ N. But notice that it simply means that (sn)n is
bounded above. However, since (sn)n is also increasing, then by the MCT, it
converges. This contradicts the fact that

∑∞
n=1 an diverges. Therefore, there

must be at least one N ∈ N such that sN ≥ M . Moreover, for all n ≥ N ,

sn ≥ sN ≥ M

Therefore, by definition, we have

∞∑
n=1

an = ∞

3.3 Properties of Sums and Series

One of the main problem in the unrigorous proof we didn’t point out yet is
the notations we used. Writing a series in the form

a1 + a2 + a3 + a4 + ...

is actually not a really good idea because it makes us think that series can
be manipulated in the same way as a usual finite sum. However, it is really
important to remember that series are not infinite sums. We sometimes call
series infinite sums because they are a nice generalization of the summation
operation applied to infinitely many objects, but many important properties
of finite sums (such as commutativity for example) aren’t shared by series.
Therefore, it is always preferable and more precise to denote a series using
the Σ-notation.

If we try to rewrite the unrigorous proof with the Σ-notation, we quickly
run into a problem. The main equation in that proof was

H − L = H
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With the Σ-notation, it is not obvious at all that

∞∑
n=1

1

n
−

∞∑
n=1

(−1)n+1

n
=

∞∑
n=1

1

n

(if we assume that
∑∞

n=1
1
n
converges.) To be more precise about the prob-

lematic step, recall that to prove that H − L = H, we used the fact that(
0 + 2 · 1

2

)
+

(
0 + 2 · 1

4

)
+

(
0 + 2 · 1

6

)
+ ... = 1 +

1

2
+

1

3
+ ...

In general, we used the following property:

a1 + a2 + a3 + a4 + ... = (a1 + a2) + (a3 + a4) + ...

This fact may seem obvious with this notation, but with Σ-notation, it looks
like

∞∑
n=1

(a2n−1 + a2n) =
∞∑
n=1

an

which seems less obvious. Thus, let’s prove it (first, for finite sums, then, for
series).

Theorem. Let (an)n be a sequence of real numbers, then

n∑
k=1

(a2k−1 + a2k) =
2n∑
k=1

ak

for all n ∈ N.

Proof. Let’s prove it by induction on n ∈ N. First,

1∑
k=1

(a2k−1 + a2k) = a1 + a2 =
2∑

k=1

ak

which proves it for n = 1. Now, for the inductive step, suppose that there is
a n ∈ N such that

n∑
k=1

(a2k−1 + a2k) =
2n∑
k=1

ak
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then adding a2n+1 + a2n+2 on both sides gives us

n+1∑
k=1

(a2k−1 + a2k) =
n∑

k=1

(a2k−1 + a2k) + a2n+1 + a2n+2

=
2n∑
k=1

ak + a2n+1 + a2n+2

=
2n+2∑
k=1

ak

=

2(n+1)∑
k=1

ak

which proves that it holds for n + 1. Therefore, it holds for all n ∈ N by
induction.

From this theorem, we can now prove it for series.

Lemma 3. Given a sequence (an)n of real numbers, if the series
∑∞

n=1 an
converges, then

∞∑
n=1

(a2n−1 + a2n) =
∞∑
n=1

an

Proof. Let (sn)n and (tn)n be the sequences of partial sums of (an)n and
(a2n−1 + a2n)n respectively. By our assumption, (sn)n converges so any sub-
sequence of (sn)n also converges to the same limit which is

∑∞
n=1 an. In

particular, we can apply this to the subsequence (s2n)n which gives us:

lim
n→∞

s2n =
∞∑
n=1

an

By the previous theorem, we know that s2n = tn for all n ∈ N so the two
sequences are actually the same. Therefore, (tn)n converges which gives us

∞∑
n=1

(a2n−1 + a2n) = lim
n→∞

tn = lim
n→∞

s2n =
∞∑
n=1

an

which is the desired result.
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3.4 The Rigorous Proof

We are now ready to prove the theorem rigorously.

Theorem.
∞∑
n=1

1

n
= ∞

Proof. Towards a proof by contradiction, suppose that the series
∑∞

n=1
1
n

converges, then by Lemma 3:

∞∑
n=1

1

n
=

∞∑
n=1

(
1

2n− 1
+

1

2n

)

Similarly, since we know from Lemma 1 that
∑∞

n=1
(−1)n+1

n
converges as well,

then again, by Lemma 3:

∞∑
n=1

(−1)n+1

n
=

∞∑
n=1

(
1

2n− 1
− 1

2n

)
Therefore,

∞∑
n=1

1

n
−

∞∑
n=1

(−1)n+1

n
=

∞∑
n=1

(
1

2n− 1
+

1

2n

)
−

∞∑
n=1

(
1

2n− 1
− 1

2n

)
=

∞∑
n=1

(
1

2n− 1
+

1

2n
− 1

2n− 1
+

1

2n

)
[Prop. (iii)]

=
∞∑
n=1

2 · 1

2n

=
∞∑
n=1

1

n

By subtracting
∑∞

n=1
1
n
on both sides and multiplying by −1, we get

∞∑
n=1

(−1)n+1

n
= 0
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which contradicts Lemma 1. Therefore,
∑∞

n=1
1
n
diverges which implies

∞∑
n=1

1

n
= ∞

by Lemma 2 since ( 1
n
)n is a positive sequence.

4 Why bother with rigor ?

4.1 Ramanujan’s Series of Integers

After all of this hard work and lemmas to make the proof rigorous, we can
ask ourselves the following question : Why bother this much going into the
details if, at the end, the unrigorous proof was easier and gave us the same
result ? Why bother with rigor if it makes everything way harder and less
obvious ? This can be answered through a classical example concerning the
manipulations of series as infinite sums. This example is due to Srinivasa
Ramanujan and can be found in his notebook [2].

First, recall the formula for geometric series

1 + x+ x2 + x3 + x4 + ... =
1

1− x

Notice that by differentiating on both sides as a function of x, we get

1 + 2x+ 3x2 + 4x3 + ... =
1

(1− x)2

By plugging-in x = −1 in this formula, we get

1− 2 + 3− 4 + ... =
1

(1 + 1)2
=

1

4
(1)

Now, define
c = 1 + 2 + 3 + 4 + ...
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and notice that

−3c = c− 4c

= 1 + 2 + 3 + 4 + 5 + 6 + ...

− ( 4 + 8 + 12 + ... )

= 1− 2 + 3− 4 + 5− 6 + ...

=
1

4

where the last step is due to equation (1). Solving for c gives us

1 + 2 + 3 + 4 + ... = − 1

12

This formula is quite surprising and obviously false. This precise example is
now well-known in the mathematical culture because of its link with some
more serious mathematics (the Riemann Zeta Function) and physics (the
Casimir Effect).

Another example of the same nature shows a similar obvious contradiction
with the same manipulations. Consider

c = 1 + 2 + 3 + 4 + ...

and notice that

0 = c− c

= 1 + 2 + 3 + 4 + ...

− (0 + 1 + 2 + 3 + ...)

= (1− 0) + (2− 1) + (3− 2) + (4− 2) + ...

= 1 + 1 + 1 + 1 + ...

which gives us
1 + 1 + 1 + 1 + ... = 0 (2)

Again, applying this same manipulation to equation (2) gives us

0 = 0− 0

= 1 + 1 + 1 + 1 + ...

− (0 + 1 + 1 + 1 + ...)

= (1− 0) + (1− 1) + (1− 1) + (1− 1) + ...

= 1 + 0 + 0 + 0 + ...
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which is a contradiction since 0 ̸= 1.
It turns out that every invalid step in the two previous examples comes

either from some problems with convergence or from the manipulation of
series in the same way as finite sums. These problems are precisely what we
made sure to go over precisely towards a rigorous proof. It is clear now that
using the wrong notations or not making sure of convergence can potentialy
and easily lead to some errors and contradictions. This shows why rigor is
needed most of the time.

4.2 Fourier’s Theorem

The Birth of Calculus (around the late 17th century) can be compared to an
explosion in the field of Mathematics. In just a few decades, a whole new set
of ideas, techniques, brand new results and mathematical geniuses appeared.
However, looking back at some texts of this period clearly shows that the
usual mathematical rigor that we know since Ancient Greece was left out of
the party. A way of explaining why it was the case is the fact that in practice
(in physics for example), everything seemed to work perfectly. Why spending
a huge amount of time proving rigorously a formula if everyone knows that
it works and everyone is already using it ? It turns out that this lack of rigor
became more of an obstacle as time went by. To illustrate this point, it will
be better to focus on a specific example.

In the first half of the 19th century, Joseph Fourier published his work
on the theory of heat propagation and the study of the Heat Equation using
trigonometric series [3]. It is in this period that he published what we now call
Fourier’s Theorem which basically states that any function can be represented
as a trigonometric series (the details are not important here, even knowing
what a trigonometric series is isn’t important). However, Fourier didn’t prove
his theorem so most of his contemporaries tried to, such as Augustin Louis
Cauchy, Siméon Denis Poisson and Peter Lejeune Dirichlet. It is only the
latter that actually succeded in giving a rigorous enough and general enough
proof of Fourier’s Theorem (a version of it, not the full theorem). But to
do so, he had to define the notion of function, even thought everyone knew
what a function was for centuries.

A few decades later, another mathematician pursued Dirichlet’s work on
Fourier’s Theorem: Bernhard Riemann. In the middle of the 19th century,
Riemann tried to improve Dirichlet’s proof but noticed that the notion of
integral, as the concept of function before Dirichlet, wasn’t well defined and
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needed a clear definition. Without a clear and formal definition of the inte-
gral, it would be hard to prove some theorems that involve taking an integral
(such as Fourier’s Theorem). This is the main motivation behind what we
now call Riemann’s Integral; which became the first widely accpeted rigorous
definition of the integral. But again, everyone knew before Riemann what
was an integral, Riemann didn’t invent the integral.

Again, a few decades later, after a lot of progress on proving Fourier’s
Theorem, while working on a theorem related to Fourier’s Theorem, the
mathematician Georg Cantor found himself defining the notion of real num-
bers and even the premices of a modern theory of sets. This theory of sets
became the foundations of modern mathamatics and is still an active field of
research today.

The question now is: why defining these intuitive notions after centuries
of everyone knowing intuitively what they were? The answer is simple: it
turned out that none of these notions were intuitive. What is a set ? A
collection of objects ? But what is a collection then ? Similarly, what is an
integral ? The area under the curve of a function ? But what is a function or
even an area ? Today, we have whole branches of mathamatics dedicated to
answering these questions: Measure Theory, Set Theory, Integration Theory,
... It is for this matter that the first step towards a rigorous proof was
to define precisely the concepts mentionned in the claim of the theorem.
Again, as for the previous section, we get here another reason why rigor is
important: some intuitive notions may in fact not be intuitive at all and it is
worth trying to understand why. For more details about Fourier’s Theorem
and its consequences on Mathematical Analysis, I wrote with Nisrine Sqalli
a whole article on the subject : Fourier Analysis: The Catalyst of Modern
Analysis [5].

5 Conclusion

Intuition may be very important and very powerful but let’s not forget that
it is not perfect. Intuitively, the earth is flat and the sun revolves around the
earth. With rigor, we end up asking seemingly simple questions that require
creating completely new worlds that intuition would have never let us explore
to answer the question. It is only by rigor that we were able to understand
the true nature of Fourier’s Theorem and many others. In conclusion, the
goal here was to explain why the rigor in mathematics wasn’t an obstacle
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but the exact opposit.
Concerning the proof of the Divergence of Harmonic Series, as I said

at the beginning, I found it nowhere else on the internet or by asking some
professors, so please, if you have heard of this proof from somewhere else than
this paper, let me know by emailing me at samy.lahloukamal@mail.mcgill.ca
so I can update this document. Thank you.
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