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Preface

The goal of this document is to share my personal solutions to the exercises in
the Second Edition of Elementary Number Theory by David M. Burton during my
reading. To make my solutions clear, for each exercise, I will assume nothing more
than the content of the book and the results proved in the preceding exercises.
Moreover, it should be noted that a lot of the exercises can be done very easily
using a calculator or using a computer program. It is for this reason that I chose
to do every exercise with no calculator and without writing any computer

program. I took this decision because I believe that I will learn more in this way.
As a disclaimer, the solutions are not unique and there will probably be better

or more optimized solutions than mine. Feel free to correct me or ask me anything
about the content of this document at the following address:

samy.lahloukamal@mail.mcgill.ca
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Chapter 1

Some Preliminary Considerations

1.1 Mathematical Induction

1. Establish the formulas below by mathematical induction:

(a) 1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2
for all n ≥ 1;

(b) 1 + 3 + 5 + · · ·+ (2n− 1) = n2 for all n ≥ 1;

(c) 1 · 2 + 2 · 3 + 3 · 4 + · · ·+ n(n+ 1) =
n(n+ 1)(n+ 2)

3
for all n ≥ 1;

(d) 12 + 32 + 52 + · · ·+ (2n− 1)2 =
n(4n2 − 1)

3
for all n ≥ 1;

(e) 13 + 23 + 33 + · · ·+ n3 =

[
n(n+ 1)

2

]2
for all n ≥ 1;

Solution

(a) First, when n = 1, we have that both sides of the equation are equal to 1, so
the basis for the induction is veri�ed. Suppose now that the equation holds
for a natural number k, then adding k + 1 on both sides gives us

1 + 2 + 3 + · · ·+ k + (k + 1) =
k(k + 1)

2
+ (k + 1).

But since

k(k + 1)

2
+ (k + 1) = (k + 1)

(
k

2
+ 1

)
=

(k + 1)(k + 2)

2
,

then

1 + 2 + 3 + · · ·+ k + (k + 1) =
(k + 1)(k + 2)

2

which implies that the equation holds for k + 1. Therefore, by induction, it
holds for all n ≥ 1.

3
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(b) First, when n = 1, we have that both sides of the equation are equal to 1, so
the basis for the induction is veri�ed. Suppose now that the equation holds
for a natural number k, then adding 2k + 1 on both sides gives us

1 + 3 + 5 + · · ·+ (2k − 1) + (2k + 1) = k2 + (2k + 1) = (k + 1)2

which implies that the equation holds for k + 1. Therefore, by induction, it
holds for all n ≥ 1.

(c) First, when n = 1, we have that both sides of the equation are equal to 2, so
the basis for the induction is veri�ed. Suppose now that the equation holds
for a natural number k, then adding (k + 1)(k + 2) on both sides gives us

1 · 2+2 · 3+ · · ·+ k(k+1)+ (k+1)(k+2) =
k(k + 1)(k + 2)

3
+ (k+1)(k+2).

But since

k(k + 1)(k + 2)

3
+(k+1)(k+2) = (k+1)(k+2)

(
k

3
+ 1

)
=

(k + 1)(k + 2)(k + 3)

3
,

then

1 · 2 + 2 · 3 + · · ·+ k(k + 1) + (k + 1)(k + 2) =
(k + 1)(k + 2)(k + 3)

3

which implies that the equation holds for k + 1. Therefore, by induction, it
holds for all n ≥ 1.

(d) First, when n = 1, we have that both sides of the equation are equal to 1, so
the basis for the induction is veri�ed. Suppose now that the equation holds
for a natural number k, then adding (2k + 1)2 on both sides gives us

12 + 32 + 52 + · · ·+ (2k − 1)2 + (2k + 1)2 =
k(4k2 − 1)

3
+ (2k + 1)2.

But since

k(4k2 − 1)

3
+ (2k + 1)2 =

4k3 − k + 3(2k + 1)2

3

=
4k3 − k + 12k2 + 12k + 3

3

=
4k3 + 12k2 + 11k + 3

3

=
(k + 1)(4k2 + 8k + 3)

3

=
(k + 1)(4(k + 1)2 − 1)

3
,

then

12 + 32 + 52 + · · ·+ (2k − 1)2 + (2k + 1)2 =
(k + 1)(4(k + 1)2 − 1)

3

which implies that the equation holds for k + 1. Therefore, by induction, it
holds for all n ≥ 1.
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(e) First, when n = 1, we have that both sides of the equation are equal to 1, so
the basis for the induction is veri�ed. Suppose now that the equation holds
for a natural number k, then adding (k + 1)3 on both sides gives us

13 + 23 + 33 + · · ·+ k3 + (k + 1)3 =

(
k(k + 1)

2

)2

+ (k + 1)3.

But since(
k(k + 1)

2

)2

+ (k + 1)3 = (k + 1)2
(
k2

22
+ (k + 1)

)
=

(
(k + 1)(k + 2)

2

)2

,

then

13 + 23 + 33 + · · ·+ k3 + (k + 1)3 =

(
(k + 1)(k + 2)

2

)2

which implies that the equation holds for k + 1. Therefore, by induction, it
holds for all n ≥ 1.

2. If r ̸= 1, show that

a+ ar + ar2 + . . . arn =
a(rn+1 − 1)

r − 1

for any positive integer n.

Solution

When n = 1, both sides of the equation are equal to a(r + 1) so the basis for
induction is veri�ed. Suppose now that the equation holds for a positive integer k,
then adding ark+1 on both sides of the equation gives us

a+ ar + ar2 + . . . ark + ark+1 =
a(rk+1 − 1)

r − 1
+ ark+1.

But since

a(rk+1 − 1)

r − 1
+ ark+1 =

ark+1 − a+ ark+2 − ark+1

r − 1
=

a(rk+2 − 1)

r − 1
,

then

a+ ar + ar2 + . . . ark + ark+1 =
a(rk+2 − 1)

r − 1

and so the equation holds for all k + 1. Therefore, it holds for all n ≥ 1.

3. Use the Second Principle of Finite Induction to establish that

an − 1 = (a− 1)(an−1 + an−2 + an−3 + · · ·+ a+ 1)

for all n ≥ 1.

Solution

When n = 1, both sides of the equation are equal to a − 1, so the basis for the
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induction is veri�ed. Suppose now that there exists a positive integer k such that
the equation holds for all n = 1, ..., k. From the identity

an+1 − 1 = (a+ 1)(an − 1)− a(an−1 − 1),

and by the inductive hypothesis for n = k and n = k − 1, we obtain:

an+1 − 1 = (a+ 1)(a− 1)(an−1 + · · ·+ 1)− a(a− 1)(an−2 + · · ·+ 1)

= (a− 1)[(a+ 1)(an−1 + · · ·+ 1)− a(an−2 + · · ·+ 1)]

= (a− 1)[(a+ 1)(an−1 + · · ·+ 1)− (an−1 + · · ·+ 1− 1)]

= (a− 1)[(a+ 1)(an−1 + · · ·+ 1)− (an−1 + · · ·+ 1) + 1]

= (a− 1)[a(an−1 + · · ·+ 1) + 1]

= (a− 1)(an + an−1 + · · ·+ a+ 1)

which proves that the equation holds for n = k+1. Therefore, by induction, it holds
for all n ≥ 1.

4. Prove that the cube of any integer can be written as the di�erence of two squares.

Solution

Using part (e) of exercice 1, we get

n3 = (13 + 23 + · · ·+ n3)− (13 + 23 + . . . (n− 1)3)

=

[
n(n+ 1)

2

]2
−
[
n(n− 1)

2

]2
which proves that any cube can be written as the di�erence of two squares.

5.

(a) Find the values of n ≤ 7 for which n! + 1 is a perfect square (it is unknown
whether n! + 1 is a square for any n > 7).

(b) True or false? For positive integers m and n, (mn)! = m!n! and (m + n)! =
m! + n!.

Solution

(a) For n = 0, 1, we have n! + 1 = 2 which is not a square. For n = 2, we have
2! + 1 = 3 which is not a square. For n = 3, we have 3! + 1 = 7 which is not a
square. When n = 4 and n = 5, we obtain 4! + 1 = 52 and 5! + 1 = 112. For
n = 6, we get 6! + 1 = 721 which is strictly between 262 = 676 and 272 = 729
so it cannot be a square. Finally, for n = 7, we obtain 7! + 1 = 712.

(b) In both cases, m = n = 2 is a counterexample since (m + n)! = (mn)! = 24
and m!n! = m! + n! = 4.
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6. Prove that n! > n2 for every integer n ≥ 4, while n! > n3 for every integer n ≥ 6.

Solution

When n = 4, then n! = 24 and n2 = 16 so the strict inequality is satis�ed. Now
that the basis for the induction is veri�ed, suppose that the inequality is satis�ed
for a positive integer k, then multiplying on both sides by k+1 gives the inequality

(k + 1)! > k2(k + 1) ≥ (k + 1)(k + 1) = (k + 1)2

using the fact that k2 ≥ k + 1 for all k ≥ 2. Thus, since the inequality is also
satis�ed by k + 1, then it is for all n ≥ 4 by induction.

When n = 6, then n! = 720 and n3 = 216 so the strict inequality is satis�ed. Now
that the basis for the induction is veri�ed, suppose that the inequality is satis�ed
for a positive integer k, then multiplying on both sides by k+1 gives the inequality

(k + 1)! > k3(k + 1) ≥ (k + 1)2(k + 1) = (k + 1)3

using the fact that k3 ≥ (k + 1)2 for all k ≥ 4. Thus, since the inequality is also
satis�ed by k + 1, then it is for all n ≥ 6 by induction.

7. Use mathematical induction to derive the formula

1 · (1!) + 2 · (2!) + 3 · (3!) + · · ·+ n · (n!) = (n+ 1)!− 1

for all n ≥ 1.

Solution

If n = 1, then both expressions on the two side of the desired equation are equal to
1; so the basis for the induction is veri�ed. Next, if we suppose that the equation
holds for a positive integer k, then adding (k + 1) · (k + 1)! on both sides gives us

1 · (1!) + 2 · (2!) + 3 · (3!) + · · ·+ (k + 1) · (k + 1)! = (k + 1)!− 1 + (k + 1) · (k + 1)!

= (k + 2) · (k + 1)!− 1

= (k + 2)!− 1

which shows that the equation also holds for n = k + 2. Therefore, by induction, it
holds for all n ≥ 1.

8.

(a) Verify that

2 · 6 · 10 · 14 · ... · (4n− 2) =
(2n)!

n!

for all n ≥ 1.

(b) Use part (a) to to obtain the inequality 2n(n!)2 ≤ (2n)! for all n ≥ 1.

Solution
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(a) Let's prove it by induction on n. When n = 1, then both expressions on
the two sides of the equation are equal to 2, so the basis for the induction is
veri�ed. Now, if we suppose that the equation holds for a positive integer k,
then by multiplying both sides by (4k + 2) gives us

2 ·6 ·10 · ... · (4n+2) =
(2n)!

n!
(4n+2) =

(2n)!

n!
· (2n+ 1)(2n+ 2)

n+ 1
=

(2(n+ 1)!)

(n+ 1)!
.

Thus, the equation also holds for n = k + 1. Therefore, by induction, it holds
for all n ≥ 1.

(b) First �x a n ≥ 1 and notice that

n! = 1 · 2 · 3 · ... · n ≤ 1 · 3 · 5 · ... · (2n− 1).

Next, multiplying both sides by 2n and using part (a) gives us

2n · n! ≤ 2 · 6 · 10 · ... · (4n− 2) =
(2n)!

n!
.

Finally, multiplying both sides by n! gives us the desired inequality.

9. Establish the Bernoulli inequality: if 1 + a > 0, then

(1 + a)n ≤ 1 + na

for all n ≥ 1.

Solution

Let's prove it by induction on n. When n = 1, then (1+a)n = 1+a ≥ 1+a = 1+na,
and so the basis for induction is veri�ed. Next, suppose that the inequality holds for
a positive integer k, then multiplying both sides by (1 + a) preserves the inequality
since it is positive. Hence, we obtain:

(1 + a)k+1 = (1 + a)(1 + a)k

≥ (1 + a)(1 + ka)

= 1 + (k + 1)a+ ka2

≥ 1 + (k + 1)a

which shows that the inequality must also hold for n = k + 1. Therefore, by
induction, it holds for all n ≥ 1.

10. Prove by mathematical induction that

1

12
+

1

22
+

1

32
+ · · ·+ 1

n2
≤ 2− 1

n

for all n ≥ 1.

Solution

When n = 1, both sides of the inequality are equal to 1, so the inequality holds and
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so the basis for the induction is veri�ed. Next, if we suppose that the inequality
holds for a positive integer k, then adding 1

(k+1)2
on both sides gives us

1

12
+

1

22
+

1

32
+ · · ·+ 1

(k + 1)2
≤ 2− 1

k
+

1

(k + 1)2
.

But notice that

0 ≤ 1 =⇒ 2k + k2 ≤ 1 + 2k + k2

=⇒ 2k + k2 ≤ (k + 1)2

=⇒ 1− (k + 1)2

k
≤ −(k + 1)

=⇒ 1

(k + 1)2
− 1

k
≤ − 1

(k + 1)

and so

1

12
+

1

22
+

1

32
+ · · ·+ 1

(k + 1)2
≤ 2 +

1

(k + 1)2
− 1

k
≤ 2− 1

k + 1
.

Thus, the inequality holds for n = k + 1. Therefore, by induction, the inequality
holds for all n ≥ 1.
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1.2 The Binomial Theorem

1. Prove that for n ≥ 1:

(a)

(
2n

n

)
=

1 · 3 · 5 · · · · · (2n− 1)

n!
2n.

(b)

(
4n

2n

)
=

1 · 3 · 5 · · · · · (4n− 1)

[1 · 3 · 5 · · · · · (2n− 1)]2

(
2n

n

)
.

Solution

(a) Let's prove it by induction. When n = 1, we have(
2n

n

)
= 2

and
1 · 3 · 5 · · · · · (2n− 1)

n!
2n = 2

and so it holds in that case. If we now suppose that it holds when n = k for
some integer k ≥ 1, then it follows that

(2k)!

(k!)2
=

1 · 3 · 5 · · · · · (2k − 1)

k!
2k.

Multiplying both sides by (2k+1)(2k+2)
(k+1)2

gives us(
2(k + 1)

k + 1

)
=

(2k + 1)(2k + 2)

(k + 1)2
· 1 · 3 · 5 · · · · · (2k − 1)

k!
2k

= 2
(2k + 1)

k + 1
· 1 · 3 · 5 · · · · · (2k − 1)

k!
2k

=
1 · 3 · 5 · · · · · (2k + 1)

(k + 1)!
2k+1

which shows that the equation also holds for n = k+1. Therefore, by induction,
it holds for all integers n ≥ 1.

(b) First, notice that by part (a), it su�ces to prove that(
4n

2n

)
=

1 · 3 · 5 · · · · · (4n− 1)

n! · 1 · 3 · 5 · · · · · (2n− 1)
2n

holds for all n ≥ 1. Let's prove it by induction on n. When n = 1, then both
sides are equal to 6 and so the statement holds in that case. Suppose now that
it holds for some integer n = k ≥ 1, then

(4k)!

(2k!)2
=

1 · 3 · 5 · · · · · (4k − 1)

k! · 1 · 3 · 5 · · · · · (2k − 1)
2k.
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Multiplying both sides by (4k+1)(4k+2)(4k+3)(4k+4)
(2k+1)2(2k+2)2

gives us(
4(k + 1)

2(k + 1)

)
=

(4k + 1)(4k + 2)(4k + 3)(4k + 4)

(2k + 1)2(2k + 2)2
· 1 · 3 · 5 · · · · · (4k − 1)

k! · 1 · 3 · 5 · · · · · (2k − 1)
2k

=
(4k + 2)(4k + 4)

(2k + 1)(2k + 2)2
· 1 · 3 · 5 · · · · · (4k + 1)

k! · 1 · 3 · 5 · · · · · (2k + 1)
2k

=
4k + 4

(2k + 2)(2k + 2)
· 1 · 3 · 5 · · · · · (4k + 1)

k! · 1 · 3 · 5 · · · · · (2k + 1)
2k+1

=
1

k + 1
· 1 · 3 · 5 · · · · · (4k + 1)

k! · 1 · 3 · 5 · · · · · (2k + 1)
2k+1

=
1 · 3 · 5 · · · · · (4k + 1)

(k + 1)! · 1 · 3 · 5 · · · · · (2k + 1)
2k+1

which shows that the equation also holds for n = k+1. Therefore, by induction,
it holds for all integers n ≥ 1.

2. If 2 ≤ k ≤ n− 2, show that(
n

k

)
=

(
n− 2

k − 2

)
+ 2

(
n− 2

k − 1

)
+

(
n− 2

k

)
, n ≥ 4.

Solution

This simply follows from Pascal's Rule:(
n− 2

k − 2

)
+ 2

(
n− 2

k − 1

)
+

(
n− 2

k

)
=

[(
n− 2

k − 2

)
+

(
n− 2

k − 1

)]
+

[(
n− 2

k − 1

)
+

(
n− 2

k

)]
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
=

(
n

k

)
.

3. For n ≥ 1, derive each of the identities below:

(a)

(
n

0

)
+

(
n

1

)
+

(
n

2

)
+ · · · +

(
n

n

)
= 2n; [Hint: Let a = b = 1 in the binomial

theorem.]

(b)

(
n

0

)
−

(
n

1

)
+

(
n

2

)
− · · ·+ (−1)n

(
n

n

)
= 0;

(c)

(
n

1

)
+2

(
n

2

)
+3

(
n

3

)
+· · ·+n

(
n

n

)
= n2n−1; [Hint: After expanding n(1+b)n−1

by the binomial theorem, let b = 1: note also that

n

(
n− 1

k

)
= (k + 1)

(
n

k + 1

)
.]

(d)

(
n

0

)
+ 2

(
n

1

)
+ 22

(
n

2

)
+ · · ·+ 2n

(
n

n

)
= 3n;
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(e)

(
n

0

)
+

(
n

2

)
+

(
n

4

)
+

(
n

6

)
+ . . .(

n

1

)
+

(
n

3

)
+

(
n

5

)
+ · · · = 2n−1; [Hint: Use parts (a) and (b).]

(f)

(
n

0

)
− 1

2

(
n

1

)
+

1

3

(
n

2

)
− · · ·+ (−1)n

n+ 1

(
n

n

)
=

1

n+ 1
; [Hint: the left-hand side

equals

1

n+ 1

[(
n+ 1

1

)
−

(
n+ 1

2

)
+

(
n+ 1

3

)
− · · ·+ (−1)n

(
n+ 1

n+ 1

)]
.]

Solution

(a) Taking a = b = 1 in the Binomial Theorem gives us

2n = (1 + 1)n =
n∑

k=0

(
n

k

)
an−kbk =

(
n

0

)
+

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

n

)
.

(b) Taking a = 1 and b = −1 in the Binomial Theorem gives us

0 = (1− 1)n =
n∑

k=0

(
n

k

)
an−kbk =

(
n

0

)
−
(
n

1

)
+

(
n

2

)
− . . . (−1)n

(
n

n

)
.

(c) From the hint, it follows that(
n

1

)
+2

(
n

2

)
+3

(
n

3

)
+· · ·+n

(
n

n

)
= n

(
n− 1

0

)
+n

(
n− 1

1

)
+· · ·+n

(
n− 1

n− 1

)
= n2n−1

where the last equality follows from part (a).

(d) Taking a = 1 and b = 2 in the Binomial Theorem gives us

3n = (1 + 2)n =
n∑

k=0

(
n

k

)
an−kbk =

(
n

0

)
+ 2

(
n

1

)
+ 22

(
n

2

)
+ . . . 2n

(
n

n

)
.

(e) From part (b), we have that(
n

0

)
+

(
n

2

)
+

(
n

4

)
+ · · · =

(
n

1

)
+

(
n

3

)
+

(
n

5

)
+ . . .

Thus, using part (a), we get(
n

0

)
+

(
n

2

)
+

(
n

4

)
+ . . . =

(
n

1

)
+

(
n

3

)
+

(
n

5

)
+ . . .

=
1

2

[(
n

0

)
+

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

n

)]
= 2n−1



CHAPTER 1. SOME PRELIMINARY CONSIDERATIONS 13

(f) Using the hint, we easily get(
n

0

)
− 1

2

(
n

1

)
+

1

3

(
n

2

)
− · · ·+ (−1)n

n+ 1

(
n

n

)
=

1

n+ 1

[(
n+ 1

1

)
−

(
n+ 1

2

)
+

(
n+ 1

3

)
− · · ·+ (−1)n

(
n+ 1

n+ 1

)]
=

1

n+ 1

(
1−

[(
n

0

)
−

(
n+ 1

1

)
+

(
n+ 1

2

)
−
(
n+ 1

3

)
+ · · ·+ (−1)n+1

(
n+ 1

n+ 1

)])
=

1

n+ 1
(1− 0)

=
1

n+ 1

4. Prove that for n ≥ 1:

(a)

(
n

r

)
<

(
n

r + 1

)
if and only if 0 ≤ r <

1

2
(n− 1).

(b)

(
n

r

)
>

(
n

r + 1

)
if and only if n− 1 ≥ r >

1

2
(n− 1).

(c)

(
n

r

)
=

(
n

r + 1

)
if and only if n is an odd integer, and r =

1

2
(n− 1).

Solution

(a) Let 0 ≤ r ≤ n− 1 be an integer, then(
n

r

)
<

(
n

r + 1

)
⇐⇒ n!

(n− r)!r!
<

n!

(n− r − 1)!(r + 1)!

⇐⇒ (n− r − 1)!(r + 1)! < (n− r)!r!

⇐⇒ r + 1 < n− r

⇐⇒ r <
1

2
(n− 1).

(b) Let 0 ≤ r ≤ n− 1 be an integer, then(
n

r

)
>

(
n

r + 1

)
⇐⇒ n!

(n− r)!r!
>

n!

(n− r − 1)!(r + 1)!

⇐⇒ (n− r − 1)!(r + 1)! > (n− r)!r!

⇐⇒ r + 1 > n− r

⇐⇒ r >
1

2
(n− 1).

(c) Let 0 ≤ r ≤ n− 1 be an integer, then(
n

r

)
=

(
n

r + 1

)
⇐⇒ n!

(n− r)!r!
=

n!

(n− r − 1)!(r + 1)!

⇐⇒ (n− r − 1)!(r + 1)! = (n− r)!r!

⇐⇒ r + 1 = n− r

⇐⇒ r =
1

2
(n− 1)

⇐⇒ n = 2r + 1.
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5. For n ≥ 1, show that the expressions
(2n)!

n!(n+ 1)!
and

(3n)!

6nn!
are both integers.

Solution

For the �rst expression, it su�ces to notice that(
2n

n

)
−

(
2n

n+ 1

)
=

(2n)!

n!n!
− (2n)!

(n− 1)!(n+ 1)!

=
(2n)!(n+ 1)− (2n)!n

n!(n+ 1)!

=
(2n)!

n!(n+ 1)!
.

Since the binomial coe�cients are integers, then it follows that the expression (2n)!
n!(n+1)!

is also an integer. For the second expression, let's prove it by induction. When n = 1,
we have

(3n)!

6nn!
=

3!

6 · 1
= 1

which proves that it holds for n = 1. Suppose now that the expression is an integer
for some n = k ≥ 1, then

(3(k + 1))!

6k+1(k + 1)!
=

(3k + 1)(3k + 2)(3k + 3)

6(k + 1)
· (3k)!
6kk!

=
(3k + 1)(3k + 2)

2
· (3k)!
6kk!

where (3k)!
6kk!

is an integer by the inductive hypothesis. Moreover, notice that 3k + 1
and 3k + 2 are two consecutive numbers and so one of them must be divisible by
two. Thus, (3k+1)(3k+2)

2
is also an integer. Therefore, the case n = k + 1 also holds

since (3(k+1))!
6k+1(k+1)!

can be written as the product of two integers.

6.

(a) For n ≥ 2, prove that(
2

2

)
+

(
3

2

)
+

(
4

2

)
+ · · ·+

(
n

2

)
=

(
n+ 1

3

)
.

[Hint Use induction and Pascal's rule.]

(b) From part (a) and the fact that

(
m

2

)
+

(
m+ 1

2

)
= m2 for m ≥ 2, deduce

the formula

12 + 22 + 32 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
.

Solution

(a) Let's prove it by induction on n. When n = 2, we have(
2

2

)
+ · · ·+

(
n

2

)
=

(
2

2

)
= 1 =

(
3

3

)
=

(
n+ 1

3

)
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and so the proposition holds in that case. Suppose now that the proposition
holds for n = k ≥ 2, then(

2

2

)
+

(
3

2

)
+

(
4

2

)
+ · · ·+

(
k

2

)
=

(
k + 1

3

)
.

Adding

(
k + 1

2

)
on both sides gives

(
2

2

)
+

(
3

2

)
+

(
4

2

)
+ · · ·+

(
k + 1

2

)
=

(
k + 1

2

)
+

(
k + 1

3

)
=

(
k + 2

3

)
and so the proposition holds for n = k + 1. Therefore, by induction, it holds
for all n ≥ 2.

(b) Using the fact that

(
m

2

)
+

(
m+ 1

2

)
= m2, we can write

12 + 22 + 32 + · · ·+ n2 = 1 +

[(
2

2

)
+

(
3

2

)]
+

[(
3

2

)
+

(
4

2

)]
+ · · ·+

[(
n

2

)
+

(
n+ 1

2

)]
= 2

[(
2

2

)
+

(
3

2

)
+

(
4

2

)
+ · · ·+

(
n

2

)]
+

(
n+ 1

2

)
= 2

(
n+ 1

3

)
+

(
n+ 1

2

)
=

2(n+ 1)n(n− 1)

6
+

(n+ 1)n

2

=
2(n+ 1)n(n− 1) + 3(n+ 1)n

6

=
n(n+ 1)(2n+ 1)

6
.

which proves the desired formula.

7. For n ≥ 1, verify that

12 + 32 + 52 + · · ·+ (2n− 1)2 =

(
2n+ 1

3

)
.

Solution

Let's prove it by induction on n. When n = 1, we have

12 + · · ·+ (2n− 1)2 = 1 =

(
3

3

)
=

(
2n+ 1

3

)
.

Thus, the proposition holds for n = 1. Suppose now that it holds for n = k ≥ 1,
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then

12 + 32 + 52 + · · ·+ (2k + 1)2 = (12 + 32 + 52 + · · ·+ (2k − 1)2) + (2k + 1)2

=

(
2k + 1

3

)
+ (2k + 1)2

=
(2k + 1)(2k)(2k − 1)

6
+ (2k + 1)(2k + 1)

=
(2k + 1)[2k(2k − 1) + 6(2k + 1)]

6

=
(2k + 1)(4k2 + 10k + 6)

6

=
(2k + 3)(2k + 2)(2k + 1)

6

=

(
2(k + 1) + 1

3

)
which shows that it holds for n = k + 1. Therefore, by induction, the proposition
holds for all n ≥ 1.

8. Establish the inequality 2n <

(
2n

n

)
< 22n for n > 1.

Solution

Let's prove it by induction on n. When n = 2, we have

2n = 4 < 6 =

(
2n

2

)
< 16 = 22n

and so it holds for this case. Suppose now that holds for an integer n = k ≥ 2, then

2k <

(
2k

k

)
< 22k.

Multiplying both sides by (2k+2)(2k+1)
(n+1)2

= 22k+1
k+1

gives us

2k+1 ≤ 2k · 22k + 1

k + 1
<

(
2(k + 1)

k + 1

)
< 22k · 22k + 1

k + 1
≤ 22(k+1)

which shows that it holds for n = k + 1. Therefore, by induction, the proposition
holds for all integers n > 1.
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1.3 Early Number Theory

1.

(a) A number is triangular if and only if it is of the form n(n + 1)/2 for some
n ≥ 1.

(b) The integer n is a triangular number if and only if 8n+ 1 is a perfect square.

(c) The sum of any two consecutive triangular number is a perfect square.

(d) If n is a triangular number, then so are 9n+ 1, 25n+ 3 and 49n+ 6.

Solution

(a) We already proved in the previous sections that

1 + 2 + 3 · · ·+ n =
n(n+ 1)

2

so it directly follows that a number of the form of one of the side of the equation
can be equivalently written in the form of the other side of the equation.

(b) First, let n be a triangular number, then there is an integer k for which n =
k(k + 1)/2. It follows that

8n+ 1 = 4k(k + 1) + 1 = 4k2 + 4k + 1 = (2k + 1)2

which shows that 8n + 1 is a perfect square. Suppose now that 8n + 1 is a
perfect square for a given integer n. Since 8n + 1 is odd, then it must be the
square of an odd number: 8n+ 1 = (2k + 1)2. Thus:

8n+ 1 = (2k + 1)2 =⇒ 8n+ 1 = 4k2 + 4k + 1

=⇒ n =
1

2
k2 +

1

2
k

=⇒ n =
k(k + 1)

2
.

Since n can be written as k(k + 1)/2, then it is a triangular number.

(c) Let a and b be triangular numbers, then a can be written as n(n+1)/2. Since
b must have the same form while being the direct successor of a, then b must
be equal to (n+ 1)(n+ 2)/2. Hence:

a+ b =
n(n+ 1)

2
+

(n+ 1)(n+ 2)

2

=
n2 + n+ n2 + 3n+ 2

2

=
2n2 + 4n+ 2

2
= n2 + 2n+ 1

= (n+ 1)2

and so the sum of two consecutive triangular numbers is a perfect square.
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(d) Let n be a triangular number, then n can be written as k(k + 1)/2. It follows
that

9n+ 1 = 9 · k(k + 1)

2
+ 1

=
1

2
(9k(k + 1) + 2)

=
1

2
(9k2 + 9k + 2)

=
1

2
((3k + 1)2 + (3k + 1))

=
(3k + 1)((3k + 1) + 1)

2
,

25n+ 3 = 25 · k(k + 1)

2
+ 3

=
1

2
(25k(k + 1) + 6)

=
1

2
(25k2 + 25k + 6)

=
1

2
((5k + 2)2 + (5k + 2))

=
(5k + 2)((5k + 2) + 1)

2

49n+ 6 = 49 · k(k + 1)

2
+ 6

=
1

2
(49k(k + 1) + 12)

=
1

2
(49k2 + 49k + 12)

=
1

2
((7k + 3)2 + (7k + 3))

=
(7k + 3)((7k + 3) + 1)

2

and so 9n+ 1, 25n+ 3 and 49n+ 6 are all triangular numbers.

2. If tn denotes the nth triangular number, prove that in terms of the binomial
coe�cients

tn =

(
n+ 1

2

)
, n ≥ 1.

Solution

Let n ≥ 1. We already proved that we can write tn as n(n + 1)/2, so using the
de�nition of the binomial coe�cients, we have that(

n+ 1

2

)
=

(n+ 1)!

(n− 1)!2!
=

(n+ 1)n

2
= tn

which proves the desired formula.
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3. Derive the following formula for the sum of triangular numbers, attributed to
the Hindu mathematician Aryabhatta (circa 500 A.D.):

t1 + t2 + t3 + · · ·+ tn =
n(n+ 1)(n+ 2)

6
, n ≥ 1.

[Hint: Group the terms on the left-hand side in pairs, noting the identity tk−1+ tk =
k2.]

Solution

Let's prove it by cases. If n = 2k, then

t1 + t2 + · · ·+ t2k−1 + t2k = (t1 + t2) + · · ·+ (t2k−1 + t2k)

= 22 + 42 + · · ·+ (2k)2

= 4(12 + 22 + · · ·+ k2)

= 4 · k(k + 1)(2k + 1)

6

=
2k(2k + 2)(2k + 1)

6

=
n(n+ 2)(n+ 1)

6
.

Suppose now that n = 2k + 1, then using the previous result:

t1 + t2 + · · ·+ tn−1 + tn =
(n− 1)n(n+ 1)

6
+

n(n+ 1)

2

=
n(n+ 1)(n− 1 + 3)

6

=
n(n+ 1)(n+ 2)

6
.

Therefore, the formula is true for all n ≥ 1.

4. Prove that the square of any odd multiple of 3 is the di�erence of two triangular
numbers; speci�cally that

9(2n+ 1)2 = t9n+4 − t3n+1.

Solution

By direct calculation:

t9n+4 − t3n+1 =
(9n+ 4)(9n+ 5)

2
− (3n+ 1)(3n+ 2)

2

=
81n2 + 81n+ 20− 9n2 − 9n− 2

2

=
72n2 + 72n+ 18

2
= 36n2 + 36n+ 9

= 9(4n2 + 4n+ 1)

= 9(2n+ 1)2.

5. In the sequence of triangular numbers, �nd
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(a) two triangular numbers whose sum and di�erence are also triangular numbers;

(b) three successive triangular numbers whose product is a perfect square;

(c) three successive triangular numbers whose sum is a perfect square.

Solution

(a) Take 15 = 1 + 2 + 3 + 4 + 5 and 21 = 1 + 2 + 3 + 4 + 5 + 6 since their sum is
36 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 and their di�erence is 6 = 1 + 2 + 3.

(b) Take
300 = 1 + 2 + 3 + · · ·+ 24,

325 = 1 + 2 + 3 + · · ·+ 25,

351 = 1 + 2 + 3 + · · ·+ 26

since their product is
300 · 325 · 351 = (5850)2.

(c) Take 15 = 1+2+3+4+5, 21 = 1+2+3+4+5+6 and 28 = 1+2+3+4+5+6+7
since their sum is

15 + 21 + 28 = 64 = 82.

6.

(a) If the triangular number tn is a perfect square, prove that t4n(n+1) is also a
square.

(b) Use part (a) to �nd three examples of squares which are also triangular
numbers.

Solution

(a) Suppose that tn is a perfect square, then there exists a k such that k2 =
n(n+ 1)/2. It follows that

t4n(n+1) =
4n(n+ 1)[4n(n+ 1) + 1]

2

= 22 · n(n+ 1)

2
· (4n2 + 4n+ 1)

= (2k(2n+ 1))2

which shows that t4n(n+1) is a square.

(b) Using part (a), it su�ces to �nd one such number to deduce in�nitely many
others. Since 62 = 1+2+3+4+5+6+7+8 = t8, then t288 and t332928 must
also be squares.
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7. Show that the di�erence between squares of two consecutive triangular numbers
is always a cube.

Solution

Let tn and tn+1 be two consecutive triangular numbers, then

t2n+1 − t2n =
(n+ 1)2(n+ 2)2

4
− n2(n+ 1)2

4

=
(n+ 1)2

4

[
(n+ 2)2 − n2

]
=

(n+ 1)2

4
(4n+ 4)

= (n+ 1)3.

8. Prove that the sum of the reciprocals of the �rst n triangular numbers is less
than 2; that is,

1/1 + 1/3 + 1/6 + 1/10 + · · ·+ 1/tn < 2.

[Hint: Observe that
2

n(n+ 1)
= 2

(
1

n
− 1

n+ 1

)
.]

Solution

By direct calculation:

1

1
+

1

3
+

1

10
+ · · ·+ 1

tn
=

2

1 · 2
+

2

2 · 3
+

2

3 · 4
+ · · ·+ 2

n(n+ 1)

= 2

(
1

1
− 1

2

)
+ 2

(
1

2
− 1

3

)
+ · · ·+ 2

(
1

n
− 1

n+ 1

)
= 2

(
1

1
− 1

2
+

1

2
− 1

3
+ · · ·+ 1

n
− 1

n+ 1

)
= 2

(
1− 1

n+ 1

)
< 2.

9.

(a) Establish the identity tx = ty + tz, where

x = 1/2 n(n+ 3) + 1, y = n+ 1, z = 1/2 n(n+ 3),

and n ≥ 1, thereby proving that there are in�nitely many triangular numbers
which are the sum of two other such numbers.

(b) Find three examples of triangular numbers which are sums of two other triangular
numbers.

Solution
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(a) By direct calculation:

ty + tz =
y(y + 1)

2
+

z(z + 1)

2

=
(n+ 1)(n+ 2)

2
+

n(n+ 3)

2

(
n(n+ 3)

2
+ 1

)
2

=
(n+ 1)(n+ 2)

2
+

n(n+ 3)(n(n+ 3) + 2)

8

=
[n(n+ 3)]2 + 2n(n+ 3) + 4(n+ 1)(n+ 2)

8

=
[n(n+ 3)]2 + 2n(n+ 3) + 4n2 + 4 · 3n+ 8

8

=
[n(n+ 3)]2 + 2n(n+ 3) + 4n(n+ 3) + 8

8

=
[n(n+ 3)]2 + 6n(n+ 3) + 8

8

=
[n(n+ 3) + 2][n(n+ 3) + 4]

8

=

(
n(n+ 3)

2
+ 1

)(
n(n+ 3)

2
+ 2

)
2

=
x(x+ 1)

2
= tx.

(b) By taking plugging n = 1, n = 2 and n = 3 in the previous equation, we
obtain that t3 = t2 + t2, t6 = t5 + t3 and t10 = t9 + t4.



Chapter 2

Divisibility Theory in the Integers

2.1 The Division Algorithm

1. Prove that if a and b are integers, with b > 0, then there exist unique integers
q and r satisfying a = qb+ r, where 2b ≤ r < 3b.

Solution By the division algorithm, we know that there exist unique q0 and r0
such that a = q0b + r0 and 0 ≤ r0 < b. This implies that if we let q = q0 − 2 and
r = r0 + 2b, then a = qb + r with 2b ≤ r < 3b. To prove that q and r are unique,
let q′ and r′ be integers such a = q′b + r′ and 2b ≤ r′ < 3b, then equivalently:
a = (q′ + 2)b + (r′ − 2b) where 0 ≤ r′ − 2b < 3b. But by uniqueness of q0 and r0,
we have r′ − 2b = r0 and so r′ = r0 + 2b = r by de�nition of r. This concludes the
proof.

2. Show that any integer of the form 6k + 5 is also of the form 3k + 2, but not
conversely.

Solution Let n be an integer of the form 6k + 5, then

n = 3 · 2k + 3 + 2 = 3(2k + 1) + 2

which proves that n is of the form 3k+2. However, the converse does not hold since
the integer 8 = 3 ·2+2 can also be written as 6 ·1+2. This shows that the converse
cannot hold since otherwise, we would have a number that has both forms 6k + 2
and 6k + 5 which would contradict the uniqueness part of the Division Algorithm.

3. Use the Division Algorithm to establish that

(a) the square of any integer is either of the form 3k or 3k + 1;

(b) the cube of any integer has one of the forms 9k, 9k + 1 or 9k + 8;

(c) the fourth power of any integer is either of the form 5k or 5k + 1.

Solution

(a) Let n be an integer, then by the Division Algorithm, we have that n has one
of the following forms: 3k, 3k+1 or 3k+2. Let's split the proof in these three
cases. If n = 3k, then n2 = 3(3k2). If n = 3k + 1, then n2 = 3(3k2 + 2k) + 1.

23
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If n = 3k + 2, then n2 = 3(3k2 + 4k + 1) + 1. Therefore, for any integer n, n2

has either the form 3k or 3k + 1.

(b) Let n be an integer, then by the Division Algorithm, we have that n has one
of the following forms: 3k, 3k+1 or 3k+2. Let's split the proof in these three
cases. If n = 3k, then n3 = 9(3k3). If n = 3k+1, then n3 = 9(3k3+3k2+k)+1.
If n = 3k + 2, then n3 = 9(3k3 + 6k2 + 4k) + 8.. Therefore, for any integer n,
n3 has either the form 9k, 9k + 1 or 9k + 8.

(c) Let n be an integer, then by the Division Algorithm, we have that n has one
of the following forms: 5k, 5k + 1, 5k + 2, 5k + 3 or 5k + 4. Let's split the
proof in these �ve cases. If n = 5k, then n4 = 5(53k4). If n = 5k + 1, then

n4 = 5(53k4 + 4 · 52k3 + 6 · 5k2 + 4k) + 1.

If n = 5k + 2, then

n4 = 5(53k4 + 2 · 4 · 52k3 + 4 · 6 · 5k2 + 8 · 4k + 3) + 1.

If n = 5k + 3, then

n4 = 5(53k4 + 3 · 4 · 52k3 + 9 · 6 · 5k2 + 27 · 4k + 16) + 1.

If n = 5k + 4, then

n4 = 5(53k4 + 4 · 4 · 52k3 + 16 · 6 · 5k2 + 64 · 4k + 51) + 1.

Therefore, for any integer n, n4 has either the form 5k or 5k + 1.

4. Prove that 3a2 − 1 is never a perfect square. [Hint: Problem 3(a).]

Solution It su�ces to notice that 3a2 − 1 + 3(a2 − 1) + 2 and to use the fact that
no square can be of the form 3k + 2 from Exercise 3(a).

5. For n ≥ 1, prove that n(n + 1)(2n + 1)/6 is an integer. [Hint: By the Division
Algorithm, n has one of the forms 6k, 6k+1, ..., 6k+5; establish the result in each
of these six cases.]

Solution Let n be an integer, then by the Division Algorithm, we have that n has
one of the following forms: 6k, 6k + 1, 6k + 2, 6k + 3, 6k + 4 or 6k + 5. Let's split
the proof in these six cases. If n = 6k, then

n(n+ 1)(2n+ 1)

6
= k(n+ 1)(2n+ 1).

If n = 6k + 1, then

n(n+ 1)(2n+ 1)

6
=

n(6k + 2)(12k + 3)

6
= n(3k + 1)(4k + 1).

If n = 6k + 2, then

n(n+ 1)(2n+ 1)

6
=

(6k + 2)(6k + 3)(2n+ 1)

6
= (3k + 1)(2k + 1)(2n+ 1).
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If n = 6k + 3, then

n(n+ 1)(2n+ 1)

6
=

(6k + 3)(6k + 4)(2n+ 1)

6
= (2k + 1)(3k + 2)(2n+ 1).

If n = 6k + 4, then

n(n+ 1)(2n+ 1)

6
=

(6k + 4)(n+ 1)(12k + 9)

6
= (3k + 2)(n+ 1)(4k + 3).

If n = 6k + 5, then

n(n+ 1)(2n+ 1)

6
=

n(6k + 6)(2n+ 1)

6
= n(k + 1)(2n+ 1).

Therefore, n(n+ 1)(2n+ 1)/6 is an integer.

6. Verify that if an integer is simultaneously a square and a cube (as is the case
with 64 = 82 = 42), then it must be either of the form 7k of 7k + 1.

Solution Let's look at possible remainders for squares and cubes of integers when
divided by 7. Since every integer can be written as 7k, 7k + 1, ..., 7k + 6, then we
get

(7k)2 = 7(7k2) + 0

(7k + 1)2 = 7(7k2 + 2k) + 1

(7k + 2)2 = 7(7k2 + 2 · 2k) + 4

(7k + 3)2 = 7(7k2 + 3 · 2k + 1) + 2

(7k + 4)2 = 7(7k2 + 4 · 2k + 2) + 2

(7k + 5)2 = 7(7k2 + 5 · 2k + 3) + 4

(7k + 6)2 = 7(7k2 + 6 · 2k + 5) + 1

and

(7k)3 = 7(72k3) + 0

(7k + 1)3 = 7(72k3 + 3 · 7k2 + 3k) + 1

(7k + 2)3 = 7(72k3 + 3 · 2 · 7k2 + 4 · 3k + 1) + 1

(7k + 3)3 = 7(72k3 + 3 · 3 · 7k2 + 9 · 3k + 3) + 6

(7k + 4)3 = 7(72k3 + 3 · 4 · 7k2 + 16 · 3k + 9) + 1

(7k + 5)3 = 7(72k3 + 3 · 5 · 7k2 + 25 · 3k + 17) + 6

(7k + 6)3 = 7(72k3 + 3 · 6 · 7k2 + 36 · 3k + 30) + 6.

Therefore, the only possible remainders after dividing a square by 7 are 0, 1, 2 and
4; and the only possible remainders after dividing a cube by 7 are 0, 1 and 6. Thus,
if a number is a square and a cube at the same time, then it can only be of the
form 7k or 7k + 1 since 0 and 1 are the only common remainders after dividing 7
for squares and cubes.

7. Obtain the following version of the Division Algorithm: For integers a and
b, with b ̸= 0, there exist unique integers q and r satisfying a = qb + r, where
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−1
2
|b| < r ≤ 1

2
|b|. [Hint: First write a = q′b + r′, where 0 ≤ r′ < |b|. When

0 ≤ r′ ≤ 1
2
|b|, let r = r′ and q = q′; when 1

2
|b| < r′ ≤ |b|, let r = r′ − |b| and

q = q′ + 1 if b > 0 or q = q′ − 1 if b < 0.]

Solution The hint already gives a major part of the exercice but let's still do it.
First, by the Division Algorithm, there exist unique integers q′ and r′ such that
a = q′b+ r′ and 0 ≤ r′ < |b|. Consider the two following cases: either 0 ≤ r′ ≤ 1

2
|b|

or 1
2
|b| < r′ < |b|. In the �rst case, let q = q′ and r = r′ to obtain a = qb + r with

−1
2
|b| < r ≤ 1

2
|b|. Similarly, if 1

2
|b| < r′ < |b|, let r = r′ − |b| and q = q′ + 1 if b > 0

or q = q′ − 1 if b. < 0. From this, we get that a = qb+ r with −1
2
|b| < r ≤ 1

2
|b|.

To prove the uniqueness of q and r, suppose that there exist integers q0 and
r0 such that a = q0b + r0 and −1

2
|b| < r0 ≤ 1

2
|b|. If 0 ≤ r0 ≤ 1

2
|b| < |b|, then by

uniqueness of q′ and r′, we get that q0 = q′ and r0 = r′. Moreover, since 0 ≤ r′ ≤ 1
2
|b|,

then by de�nition of q and r in that case, we get that q0 = q and r0 = r. Otherwise,
−1

2
|b| < r0 < 0. If b > 0, then we can write

a = (q0 − 1)b+ (r0 + b)

with 1
2
|b| < r0+b < |b|. By uniqueness of q′ and r′, we get q′ = q0−1 and r0+b = r′.

But since in that case r = r′ − b and q = q′ + 1, then r0 = r and q0 = q. Otherwise,
if b < 0, then we can write

a = (q0 + 1)b+ (r0 + |b|)

with 1
2
|b| < r0 + |b| < |b|. By uniqueness of q′ and r′, we get q′ = q0 + 1 and

r0 + |b| = r′. But since in that case r = r′ − |b| and q = q′ − 1, then r0 = r and
q0 = q. Therefore, in all possible cases, r0 = r and q0 = q. It follows that q and r
are unique.

8. Prove that no integer in the sequence

11, 111, 1111, 11111, . . .

is a perfect square. [Hint: A typical term 111 . . . 111 can be written as 111 . . . 111 =
111 . . . 108 + 3 = 4k + 3.]

Solution Since every element in the sequence can be written in the form 4k + 3,
then using one of the example in the section stating that squares must have the form
4k or 4k + 1, it follows that no element in the sequence can be a square.

9. Show that the cube of any integer is of the form 7k or 7k ± 1.

Solution Let's look at possible remainders of cubes of integers when divided by 7.
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Since every integer can be written as 7k, 7k + 1, ..., 7k + 6, then we get

(7k)3 = 7(72k3) + 0

(7k + 1)3 = 7(72k3 + 3 · 7k2 + 3k) + 1

(7k + 2)3 = 7(72k3 + 3 · 2 · 7k2 + 4 · 3k + 1) + 1

(7k + 3)3 = 7(72k3 + 3 · 3 · 7k2 + 9 · 3k + 4)− 1

(7k + 4)3 = 7(72k3 + 3 · 4 · 7k2 + 16 · 3k + 9) + 1

(7k + 5)3 = 7(72k3 + 3 · 5 · 7k2 + 25 · 3k + 18)− 1

(7k + 6)3 = 7(72k3 + 3 · 6 · 7k2 + 36 · 3k + 31)− 1.

It follows that every cube must be of the form 7k or 7k ± 1.

10. For n ≥ 1, establish that the integer n(7n2 + 5) is of the form 6k.

Solution Notice that n must have one of the following form: 6k, 6k+1, ..., 6k+5.
If n = 6k, then

n(7n2 + 5) = 6[k(7n2 + 5)].

If n = 6k + 1, then

n(7n2 + 5) = n(7 · 62k2 + 2 · 7 · 6k + 7 + 5) = 6[n(7 · 6k2 + 2k + 2)].

If n = 6k + 2, then

n(7n2 + 5) = (6k + 2)(7 · 62k2 + 7 · 4 · 6k + 33) = 6[(3k + 1)(84k2 + 56k + 11)].

If n = 6k + 3, then

n(7n2 + 5) = (6k + 3)(7 · 62k2 + 7 · 6 · 6k + 68) = 6[(2k + 1)(126k2 + 126k + 34)].

If n = 6k + 4, then

n(7n2 + 5) = (6k + 4)(7 · 62k2 + 7 · 8 · 6k + 117) = 6[(3k + 2)(84k2 + 112k + 39)].

If n = 6k + 5, then

n(7n2 + 5) = n(7 · 62k2 + 7 · 10 · 6k + 180) = 6[n(42k + 70k + 30)]

Therefore, since it holds for all possible cases, it is clear that n(7n2 + 5) is of the
form 6k.

11. If n is an odd integer, show that n4 + 4n2 + 11 is of the form 16k.

Solution If n is an odd integer, then it can be written as n = 4k + 1 or 4k − 1
(Exercise 7). If n = 4k + 1, then:

n4 + 4n2 + 11 = (4k + 1)4 + 4(4k + 1)2 + 11

= 44k4 + 4 · 43k3 + 6 · 42k2 + 4 · 4k + 1 + 4 · 42k2 + 4 · 4 · 2k + 4 + 11

= 16(16k4 + 16k3 + 10k2 + 3k + 1).



CHAPTER 2. DIVISIBILITY THEORY IN THE INTEGERS 28

If n = 4k − 1, then:

n4 + 4n2 + 11 = (4k − 1)4 + 4(4k − 1)2 + 11

= 44k4 − 4 · 43k3 + 6 · 42k2 − 4 · 4k + 1 + 4 · 42k2 − 4 · 4 · 2k + 4 + 11

= 16(16k4 − 16k3 + 10k2 − 3k + 1).

Therefore, since it holds for all possible cases, it is clear that n4 +4n2 +11 is of the
form 16k.
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2.2 The Greatest Common Divisor

1. If a | b, show that (−a) | b, a | (−b) and (−a) | (−b).

Solution Since a | b, then there exists and integer k such that b = ka. Rewriting
this equation as b = (−k)(−a) lets us conclude that (−a) | b. Similarly, we can
multiply both sides by −1 to obtain the new equation −b = −ka. Interpreting this
equation as (−b) = (−k)a implies that a | (−b), and interpreting it as (−b) = k(−a)
implies that (−a) | (−b).

2. Given integers a, b, c, d, veri�y that

(a) if a | b, then a | bc;

(b) if a | b and a | c, then a2 | bc;

(c) a | b if and only if ac | bc, where c ̸= 0;

(d) if a | b and c | d, then ac | bd.

Solution

(a) Since a | b, then there exists an integer k such that b = ka. Multiplying by c
on both sides of the previous equation implies bc = (kc)a and so a | bc.

(b) Since a | b and a | c, then there exist integers k1 and k2 such that b = k1a
and c = k2a. Multiplying these two equations together gives us bc = (k1k2)a

2

which implies that a2 | bc.

(c) Suppose that c is non-zero. By de�nition, a | b if and only if b = ka for some
integer k. Since c is non-zero, then this equation holds if and only if bc = k(ac).
Again, by de�nition, this equation holds if and only if ac | bc. Therefore, a | b
if and only if ac | bc.

(d) Since a | b and c | d, then there exist integers k1 and k2 such that b = k1a and
d = k2c. Multiplying these two equations together gives us bd = (k1k2)(ac)
which implies that ac | bd.

3. Prove or disprove: if a | (b+ c), then either a | b or a | c.

Solution This is false because 2 | 1 + 1 but 2 does not divide 1.

4. For n ≥ 1, use mathematical induction to establish each of the following
divisibility statements:

(a) 8 | 52n + 7;

[Hint: 52k+1 + 7 = 52(52k + 7) + (7− 52 · 7).]

(b) 15 | 24n − 1;

(c) 5 | 33n+1 + 2n+1;

(d) 21 | 4n+1 + 52n−1;
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(e) 24 | 2 · 7n + 3 · 5n − 5.

Solution

(a) When n = 1, we have that 52n + 7 = 25 + 7 = 32 = 8 · 4 and so 8 | 52n + 7.
Suppose now that 8 | 52k + 7 for some k ≥ 1, then 8 | 52(52k + 7); and notice
that 8 | 7(1− 52) since 7(1− 52) = 7 · (−3) · 8, then

8 | 52(52k + 7) + 7(1− 52) = 52(k+1) + 7.

Since it also holds for n = k + 1, then it holds for all n ≥ 1 by induction.

(b) When n = 1, we have that 24n − 1 = 16 − 1 = 15 · 1 and so 15 | 24n − 1.
Suppose now that 15 | 24k− 1 for some k ≥ 1, then 15 | 24(24k− 1); and notice
that 15 | 24 − 1, then

15 | 24(24k − 1) + 24 − 1 = 24(k+1) − 1.

Since it also holds for n = k + 1, then it holds for all n ≥ 1 by induction.

(c) When n = 1, we have that 33n+1 + 2n+1 = 85 = 5 · 9 and so 5 | 33n+1 + 2n+1.
Suppose now that 5 | 33k+1 + 2k+1 for some k ≥ 1, then 5 | 33(33k+1 + 2k+1);
and since 5 | 2− 33 = −25, then

5 | 33(33k+1 + 2k+1) + (2− 33)2k+1 = 33(k+1)+1 + 2(k+1)+1.

Since it also holds for n = k + 1, then it holds for all n ≥ 1 by induction.

(d) When n = 1, we have that 4n+1+52n−1 = 16+5 = 21·1 and so 21 | 4n+1+52n−1.
Suppose now that 21 | 4k+1 + 52k−1 for some k ≥ 1, then 21 | 4(4k+1 + 52k−1);
and since 21 | (52 − 1)52k−1, then

21 | 4(4k+1 + 52k−1) + (52 − 4)52k−1 = 4(k+1)+1 + 52(k+1)−1.

Since it also holds for n = k + 1, then it holds for all n ≥ 1 by induction.

(e) Let's use the Second Principle of Mathematical Induction. First notice that
when n = 1, we have

2 · 7n + 3 · 5n − 5 = 14 + 15− 5 = 24 · 1

so it holds in that case. Moreover, when n = 2, then

2 · 7n + 3 · 5n − 5 = 98 + 75− 5 = 168 = 24 · 7

so it holds in that case as well. Suppose now that 24 | 2 · 7q + 3 · 5q − 5 for all
integers q smaller than or equal to some integer k ≥ 2. Notice that

2 · 7k+1 + 3 · 5k+1 − 5

=7(2 · 7k + 3 · 5k − 5)− 7 · 3 · 5k + 5(2 · 7k + 3 · 5k − 5)− 2 · 5 · 7k + 55

=12(2 · 7k + 3 · 5k − 5)− 35(2 · 7k−1 + 3 · 5k−1 − 5)− 24 · 5.

But since by our assumption 24 divides 2 · 7k +3 · 5k − 5, 2 · 7k−1 +3 · 5k−1 − 5
and 24 · 5, then 24 divides any linear combinations of these three terms. In
particular, 24 divides the one above which is equal to 2 · 7k+1 + 3 · 5k+1 − 5.
Thus, the statement holds for the case n = k + 1. Therefore, by induction, it
holds for all n ≥ 1.
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5. Prove that for any integer a one of the integers a, a+ 1, a+ 4 is divisible by 3.
[Hint: By the Division Algorithm, the integer a must be of the forms 3k, 3k+ 1, or
3k + 2.]

Solution Consider the three following cases: When a = 3k, then a is obviously
divisible by 3. When a = 3k+1, then a+2 = 3k+1+ 2 = 3(k+1) which makes it
divisible by 3. Finally, when a = 3k + 2, then a+ 4 = 3(k + 2) and so it is divisible
by 3. Therefore, in all possible cases for a, one of a, a+2, a+4must be divisible by 3.

6. For an arbitrary integer a, verify that

(a) 2 | a(a+ 1), and 3 | a(a+ 1)(a+ 2);

(b) 3 | a(2a2 + 7);

(c) if a is odd, then 32 | (a2 + 3)(a2 + 7).

Solution

(a) Consider the two following cases for a: when a = 2k, then 2 | a which implies
that 2 | a(a+1). When a = 2k+1, then 2 | 2(k+1) = a+1 and so 2 | a(a+1).
Thus, 2 | a(a+1) for all integers a. Let's use the same technique for the second
statement by considering the three following cases: when a = 3k, then 3 | a
and so 3 | a(a + 1)(a + 2). When a = 3k + 1, then 3 | 3(k + 1) = a + 2 and
so 3 | a(a + 1)(a + 2). When a = 3k + 1, then 3 | 3(k + 1) = a + 1 and so
3 | a(a+ 1)(a+ 2). Therefore, 3 | a(a+ 1)(a+ 2) for all integers a.

(b) Consider the three following cases: When a = 3k, then 3 | a and so 3 |
a(2a2 + 7). When a = 3k + 1, then

2a2 + 7 = 2 · 32k2 + 4 · 3k + 2 + 7 = 3(6k2 + 4k + 3)

and so 3 | 2a2 + 7 which impliues that 3 | a(2a2 + 7). When a = 3k + 2, then

2a2 + 7 = 2 · 32k2 + 4 · 2 · 3k + 8 + 7 = 3(6k2 + 8k + 5)

and so 3 | 2a2 + 7 which impliues that 3 | a(2a2 + 7). Therefore, 3 | a(2a2 + 7)
for all integers a.

(c) Let a be an odd integer, then a must be of the form 2k + 1. It follows that

(a2 + 3)(a2 + 7) = ((2k + 1)2 + 3)((2k + 1)2 + 7)

= (4k2 + 4k + 4)(4k2 + 4k + 8)

= 16(k2 + k + 1)(k2 + k + 2).

Now, if we let m = k2 + k + 1, then we already proved that 2 must divide
m(m+ 1) and so (k2 + k + 1)(k2 + k + 2) = 2q. Thus,

(a2 + 3)(a2 + 7) = 32q

which implies that 32 | (a2 + 3)(a2 + 7).
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7. Prove that if a and b are both odd integers, then 16 | a4 + b4 − 2.

Solution If a and b are both odd integers, then there exist integers k and q such
that a = 2k + 1 and b = 2q + 1. It follows that

a4 + b4 − 2 = (2k + 1)4 + (2q + 1)4 − 2

= 24k4 + 4 · 23k3 + 6 · 22k2 + 4 · 2k
+ 24q4 + 4 · 23q3 + 6 · 22q2 + 4 · 2q

= 16(k4 + q4 + 2k3 + 2q3) + 8(3k2 + k) + 8(3q2 + q).

Let's focus on the term 3k2 + k. If k is even, then it follows that 3k2 + k is even as
well. If k is odd, then 3k2 must also be odd. But then, 3k2 + k is even since it is
the sum of two odd numbers. Therefore, 3k2 + k is even for all k. It follows that
3k2 + k = 2k0 for some integer k0. The same argument shows that 3q2 + q = 2q0 for
some integer q0. Hence, we can rewrite the above equation as follows:

a4 + b4 − 2 = 16(k4 + q4 + 2k3 + 2q3 + k0 + q0)

from which we directly see that 16 | a4 + b4 − 2.

8. Prove that

(a) the sum of the squares of two odd integers cannot be a perfect square;

(b) the product of four consecutive integers is 1 less than a perfect square.

Solution

(a) Let 2k + 1 and 2q + 1 be two odd integers, then the sum of their squares

(2k + 1)2 + (2q + 1)2 = 4k2 + 4k + 1 + 4q2 + 4q + 1 = 4(k2 + q2 + k + q) + 2

is of the form 4m+ 2. However, we already proved that perfect squares must
have the forms 4n or 4n + 1. Therefore, the sum of two odd integers cannot
be a square.

(b) Let a be an integer, then

a(a+ 1)(a+ 2)(a+ 3) = a(a2 + 3a+ 2)(a+ 3)

= a(a3 + 6a2 + 11a+ 6)

= [a4 + 6a3 + 11a2 + 6a+ 1]− 1

= (a2 + 3a+ 1)2 − 1.

Since it holds for all integers a, then the product of any four consecutive
integers is 1 less than a square.

9. Establish that the di�erence of two consecutive cubes is never divisible by 2.

Solution Let a be an integer, then

(a+ 1)3 − a3 = 3(a2 + a) + 1.
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Since taking the square of a number preserves its parity, then a2 and a must have
the same parity. It follows that their sum must be even and so a2 + a = 2k. Thus:

(a+ 1)3 − a3 = 2(3k) + 1

which implies that the di�erence of two cubes is always odd.

10. For a nonzero integer a, show that gcd(a, 0) = |a|, gcd(a, a) = |a|, and
gcd(a, 1) = 1.

Solution We know that the greatest common divisor of a and b can be intepreted
as the smallest positive linear combination of a and b. But since the positive linear
combinations of a and 0 are precisely the positive multiples of a, then it follows
that gcd(a, 0) = |a| since |a| is the least positive multiple of a. Similarly, the
positive linear combinations of a and a are precisely the positive multiples of a and
so gcd(a, a) = |a| for the same reasons. Finally, since

a · 0 + 1 · 1 = 1,

then gcd(a, 1) = 1 by Theorem 2-4.

11. If a and b are integers, not both of which are zero, verify that

gcd(a, b) = gcd(−a, b) = gcd(a,−b) = gcd(−a,−b).

Solution Notice that

(−a)(−x) + by = ax+ (−b)(−y) = (−a)(−x) + (−b)(−y)

implies that the set of positive linear combinations of a and b is precisely equal to
the set of linear combinations of −a and b, a and −b, and −a and −b. Therefore, it
follows that

gcd(a, b) = gcd(−a, b) = gcd(a,−b) = gcd(−a,−b).

12. Prove that, for a positive integer n and any integer a, gcd(a, a+ n) divides n;
hence, gcd(a, a+ 1) = 1.

Solution First, we know that gcd(a, a+ n) must divide any linear combination of
a and a+ n. In particular, it must divide

a · (−1) + (a+ n) · 1 = n.

13. Given integers a and b, prove that

(a) there exist integers x and y for which c = ax+ by if and only if gcd(a, b) | c.

(b) if there exist integers x and y for which ax+by = gcd(a, b), then gcd(x, y) = 1.

Solution
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(a) If c is a linear combination of a and b, then gcd(a, b) divides it since it divides
both a and b. If gcd(a, b) | c, then c = k · gcd(a, b). But since there exist
integers x0 and y0 such that gcd(a, b) = ax0 + by0, then c = a(kx0) + b(ky0).
Therefore, c is a linear combination of a and b if and only if it is a multiple of
gcd(a, b).

(b) We know that if gcd(a, b) = ax + by, then ax + by is the least positive linear
combination of a and b. By contradiction, if gcd(x, y) ̸= 1, then gcd(x, y) > 1
and so

0 < a

(
x

gcd(x, y)

)
+ b

(
y

gcd(x, y)

)
< ax+ by

which contradicts the fact that ax+by is the smallest positive linear combination.
Therefore, gcd(x, y) = 1.

14. For any integer a, show that

(a) gcd(2a+ 1, 9a+ 4) = 1;

(b) gcd(5a+ 2, 7a+ 3) = 1;

(c) if a is odd, then gcd(3a, 3a+ 2) = 1.

Solution

(a) It su�ces to notice that

(2a+ 1) · 5 + (9a+ 4) · (−1) = 1.

(b) It su�ces to notice that

(5a+ 2) · (−4) + (7a+ 3) · 3 = 1.

(c) We know that gcd(3a, 3a+2) divides any linear combination of 3a and 3a+2.
In particular, it must divide

3a · (−1) + (3a+ 2) · 1 = 2.

Hence, gcd(3a, 3a+2) is either 1 or 2. By contradiction, if gcd(3a, 3a+2) = 2,
then 2 | 3a. Moreover, since gcd(2, 3) = 1, then 2 | 3a implies that 2 | a which
is impossible since a is odd. Therefore, gcd(3a, 3a+ 2) = 1.

15. If a and b are integers, not both of which are zero, prove that gcd(2a−3b, 4a−5b)
divides b; hence, gcd(2a+ 3, 4a+ 5) = 1.

Solution Since gcd(2a− 3b, 4a− 5b) divides all linear combinations of 2a− 3b and
4a− 5b, then it divides

(2a− 3b) · (−2) + (4a− 5b) · 1 = b.

16. Given an odd integer a, establish that

a2 + (a+ 2)2 + (a+ 4)2 + 1
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is divisible by 12.

Solution Since a is odd, then a = 2k + 1 for some integer k. Thus:

a2 + (a+ 2)2 + (a+ 4)2 + 1 = (2k + 1)2 + (2k + 3)2 + (2k + 5)2 + 1

= 12k2 + 36k + 36

= 12(k2 + 3k + 3).

Therefore, 12 | a2 + (a+ 2)2 + (a+ 4)2 + 1.

17. Prove that (2n)!/n!(n+ 1)! is an integer for all n ≥ 0.

[Hint: Note that

(
2n

n

)
(2n+ 1) =

(
2n+ 1

n+ 1

)
(n+ 1).]

Solution Using the de�nition of the binomial coe�cients, we have that

(2n)!

n!(n+ 1)!
=

1

n+ 1

(
2n

n

)
.

Hence, it su�ces to show that n+ 1 divides

(
2n

n

)
. But since

(
2n

n

)
(2n+ 1) =

(
2n+ 1

n+ 1

)
(n+ 1),

then by de�nition, n+ 1 divides

(
2n

n

)
(2n+ 1). However, from the fact that

2(n+ 1)− (2n+ 1) = 1,

we have that gcd(2n+1, n+1) = 1 which lets us conclude, by Euclid's Lemma, that

n+ 1 divides

(
2n

n

)
. Therefore, (2n)!/n!(n+ 1)! is an integer.

18. Prove: the product of any three consecutive integers is divisible by 6; the
product of any four consecutive integers is divisible by 24; the product of any �ve
consecutive integers is divisible by 120. [Hint: See Corollary 2 to Theorem 2-4.]

Solution First, we know that for any integer a, one of a and a + 1 is divisible by
2 by considering the cases where a is even and odd. Similarly, we know that one of
a, a + 1, a + 2 must be divisible by 3 by considering the cases a = 3k, a = 3k + 1,
a = 3k+2. In the same way, one of a, a+1, a+2, a+3 is divisible by 4 and another
of them is divisible by 2 which makes the product of the four factors divisible by
8. Finally, As we did above, we can easily prove that one of a, a + 1, a + 2, a + 3,
a+ 4 is divisible by 5. Hence, it follows from Corollary 2 that the product of three
consecutive factors is divisble by 6 since gcd(2, 3) = 1; the product of four factors
is divisible by 24 since gcd(3, 8) = 1; and the product of �ve factors is divisible by
120 since gcd(24, 5) = 1.

19. Establish each of the assertions below:

(a) If a is an arbitrary integer, then 6 | a(a2 + 11).
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(b) If a is an odd integer, then 24 | a(a2− 1). [Hint: The square of an odd integer
is of the form 8k + 1.]

(c) If a and b are odd integers, then 8 | (a2 − b2).

(d) If a is an integer not divisible by 2 or 3, then 24 | (a2+23). [Hint: Any integer
a must assume one of the forms 6k, 6k + 1, ..., 6k + 5.]

Solution

(a) Let's split the proof in six cases. If a = 6k, then 6 | a and so 6 | a(a2 + 11). If
a = 6k + 1, then

a2 + 11 = 62k2 + 2 · 6k + 12 = 6(6k2 + 2k + 2)

and so 6 | a(a2 + 11). If a = 6k + 2, then

a(a2 + 11) = (6k + 2)(62k2 + 4 · 6k + 15) = 6(3k + 1)(12k2 + 8k + 5)

and so 6 | a(a2 + 11). If a = 6k + 3, then

a(a2 + 11) = (6k + 3)(62k2 + 62k + 20) = 6(2k + 1)(18k2 + 18k + 10)

and so 6 | a(a2 + 11). If a = 6k + 4, then

a(a2 + 11) = (6k + 4)(62k2 + 8 · 6k + 27) = 6(3k + 2)(12k2 + 16k + 9)

and so 6 | a(a2 + 11). If a = 6k + 5, then

a(a2 + 11) = a(62k2 + 10 · 6k + 36) = 6a(6k2 + 10k + 6)

and so 6 | a(a2 + 11). Therefore, 6 | a(a2 + 11) for all integers a.

(b) First, rewrite a(a2−1) as (a−1)a(a+1) which shows that it is the product of
three succesive integers. Hence, it must be divisible by 3. Since a is odd, then
a− 1 is even and so (a− 1)(a + 1) is of the form m(m + 2) where m is even.
By considering the cases m = 4k and m = 4k + 2, we get that (a− 1)(a + 1)
must be divisible by 8. Thus, a(a2 − 1) is divisible by both 8 and 3. Since
gcd(8, 3) = 1, then 24 | a(a2 − 1).

(c) If a = 2k + 1 and b = 2q + 1, then

a2 − b2 = (2k − 2q)(2k + 2q + 2) = 4(k − q)(k + q + 1).

If k and q have the same parity, then k − q is even and so a2 − b2 = 8k0. If k
and q have distinct parities, then k+ q+1 is even and so a2− b2 = 8k0. Thus,
in all possible cases, 8 | (a2 − b2).

(d) If a is not divisble by 2 or by 3, then it must have the form 6k + 1 or 6k + 5.
In the case a = 6k + 1, we have

a2 + 23 = 36k2 + 12k + 24 = 12(3k2 + k) + 24.

Since 3k2 has the same parity as k, then 3k2+k must be even, and so it can be
written as 2k0. Hence, a

2 + 23 = 24(k0 + 1) which implies that 24 | (a2 + 23).
Next, if a = 6k+5, then equivalently, it has the form a = 6q−1. In that case,

a2 + 23 = 36k2 − 12k + 24 = 12(3k2 − k) + 24.

Using the same argument as above, 3k2 − k = 2k0 and so a2 +23 = 24(k0 +1)
which proves that 24 | (a2 + 23).
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20. Con�rm the following properties of the greatest common divisor:

(a) If gcd(a, b) = 1, and gcd(a, c) = 1, then gcd(a, bc) = 1. [Hint: Since 1 = ax+
by = au+cv for some x, y, u, v, 1 = (ax+by)(au+cv) = a(aux+byu)+bc(yv).]

(b) If gcd(a, b) = 1, and c | a, then gcd(b, c) = 1.

(c) If gcd(a, b) = 1, then gcd(ac, b) = gcd(c, b).

(d) If gcd(a, b) = 1, and c | a + b, then gcd(a, c) = gcd(b, c) = 1. [Hint: Let
d = gcd(a, c). Then d | a, d | c implies that d | (a+ b)− a, or d | b.]

(e) If gcd(a, b) = 1, d | ac, and d | bc, then d | c.

(f) If gcd(a, b) = 1, then gcd(a2, b2) = 1. [Hint: First show that gcd(a2, b) =
gcd(a, b2) = 1.]

Solution

(a) We know that there exist integers x, y, u, v such that ax+by = 1 and au+cv =
1. Multiplying these two equations gives us a(aux+ byu) + bc(yv) = 1 and so
gcd(a, bc) = 1.

(b) Since gcd(a, b) = 1, then there exist integers x and y such that ax + by = 1.
Since c | a, then there exists an integer k such that a = kc. Replacing the value
of a with this new expression in the linear combination gives us c(kx)+by = 1.
Therefore, gcd(c, b) = 1.

(c) Since gcd(c, b) divides both ac and b, then it divides gcd(ac, b). Conversely,
gcd(ac, b) divides b. Moreover, since gcd(ac, b) divides b and gcd(a, b) = 1,
then gcd(a, gcd(ac, b)) = 1. It follows that from the fact that gcd(ac, b) | ac,
we get that gcd(ac, b) | c. Thus, gcd(ac, b) | gcd(c, b) since it divides both c
and b. Therefore, gcd(ac, b) = gcd(c, b) since both divide the other and both
are positive.

(d) Let da = gcd(a, c), then by de�nition, da | a and da | c. From the fact
that c | a + b, we get that da divides both a and a + b. It follows that
da | (a+ b)−a = b. Since it divides both a and b, then it divides gcd(a, b) = 1.
Therefore, gcd(a, c) = da = 1. The proof is strictly the same for db = gcd(b, c).

(e) If gcd(a, b) = 1, then there exist integers x and y such that ax+ by = 1. Since
d divides both ac and bc, then it divides any of their linear combinations. In
particular, d divides

acx+ bcy = c(ax+ by) = c.

(f) Using part (c) of this exercise with c = a, we have that gcd(a2, b) = gcd(a, b) =
1. Similarly, if we now apply part (c) with a = b, b = a2 and c = b, we obtain
gcd(a2, b2) = gcd(a2, b) = 1.

21. Prove that if d | n, then 2d − 1 | 2n − 1. [Hint: Employ the identity
xk − 1 = (x− 1)(xk−1 + xk−2 + · · ·+ 1).]
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Solution Since d | n, then n = dk for some integer k. It follows that

2n − 1 =
(2d)k − 1

2d − 1
(2d − 1) = ((2d)k−1 + · · ·+ 1)(2d − 1).

Therefore, 2d − 1 | 2n − 1.
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2.3 The Euclidean Algorithm

1. Find gcd(143, 227), gcd(306, 657) and gcd(272, 1479).

Solution Let's apply the Euclidean Algorithm:

227 = 1 · 143 + 84

143 = 1 · 84 + 59

84 = 1 · 59 + 25

59 = 2 · 25 + 9

25 = 2 · 9 + 7

9 = 1 · 7 + 2

7 = 3 · 2 + 1

2 = 2 · 1 + 0

and so gcd(143, 227) = 1.

657 = 2 · 306 + 45

306 = 6 · 45 + 36

45 = 1 · 36 + 9

36 = 4 · 9 + 0

and so gcd(306, 657) = 9.

1479 = 5 · 272 + 119

272 = 2 · 119 + 34

119 = 3 · 34 + 17

34 = 2 · 17 + 0

and so gcd(272, 1479) = 17.

2. Use the Euclidean Algorithm to obtain integers x and y satisfying

(a) gcd(56, 72) = 56x+ 72y;

(b) gcd(24, 138) = 24x+ 138y;

(c) gcd(119, 272) = 119x+ 272y;

(d) gcd(1769, 2378) = 1769x+ 2378y;

Solution

(a) First, let's apply the Euclidean Algorithm:

72 = 1 · 56 + 16

56 = 3 · 16 + 8

16 = 2 · 8 + 0.
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Now, running these equations backward gives us

8 = 56− 3 · 16
= 56− 3(72− 56)

= 4 · 56− 3 · 72.

Thus, x = 4 and y = −3.

(b) First, let's apply the Euclidean Algorithm:

138 = 5 · 24 + 18

24 = 1 · 18 + 6

18 = 3 · 6 + 0.

Now, running these equations backward gives us

6 = 24− 18

= 24− (138− 5 · 24)
= 6 · 24− 138

Thus, x = 6 and y = −1.

(c) First, let's apply the Euclidean Algorithm:

272 = 2 · 119 + 34

119 = 3 · 34 + 17

34 = 2 · 17 + 0.

Now, running these equations backward gives us

17 = 119− 3 · 34
= 119− 3(272− 2 · 119)
= 7 · 119− 3 · 272

Thus, x = 7 and y = −3.

(d) First, let's apply the Euclidean Algorithm:

2378 = 1 · 1769 + 610

1769 = 2 · 610 + 549

610 = 1 · 549 + 61

549 = 9 · 61 + 0.

Now, running these equations backward gives us

61 = 610− 549

= 610− (1769− 2 · 610)
= 3 · 610− 1769

= 3(2378− 1769)− 1769

= 3 · 2378− 4 · 1769.

Thus, x = −4 and y = 3.
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3. Prove that if d is a common divisor of a and b, then d = gcd(a, b) if and only if
gcd(a/d, b/d) = 1. [Hint: Use Theorem 2-7.]

Solution Suppose that d = gcd(a, b) and write d = ax + by, then dividing both
sides by d gives us 1 = (a/d)x+(b/d)y. Thus, gcd(a/d, b/d) = 1. Suppose now that
gcd(a/d, b/d) = 1, then by multiplying both sides by d, we get

gcd(a, b) = d gcd(a/d, b/d) = d.

4. Assuming that gcd(a, b) = 1, prove the following:

(a) gcd(a+ b, a− b) = 1 or 2.

[Hint: Let d = gcd(a + b, a − b) and show that d | 2a, d | 2b; thus, that
d ≤ gcd(2a, 2b) = 2 gcd(a, b).]

(b) gcd(2a+ b, a+ 2b) = 1 or 3.

(c) gcd(a+ b, a2 + b2) = 1 or 2.

[Hint: a2 + b2 = (a+ b)(a− b) + 2b2.]

(d) gcd(a+ b, a2 − ab+ b2) = 1 or 3.

[Hint: a2 − ab+ b2 = (a+ b)2 − 3ab.]

Solution

(a) Let d = gcd(a + b, a − b), then d | a + b and d | a − b. It follows that
d | (a + b) + (a − b) = 2a and d | (a + b) − (a − b) = 2b. Hence, d ≤
gcd(2a, 2b) = 2 gcd(a, b) = 2. It follows that gcd(a + b, a − b) = d is either 1
or 2.

(b) Let d = gcd(2a + b, a + 2b), then d | 2a + b and d | a + 2b. It follows that
d | 2(a + 2b) − (2a + b) = 3b and d | 2(2a + b) − (a + 2b) = 3a. Hence,
d | gcd(3a, 3b) = 3 gcd(a, b) = 3. Therefore, d is either 1 or 3.

(c) Let d = gcd(a + b, a2 + b2), then d | a + b and d | a2 + b2. It follows that
d | (a2 + b2) − (a + b)(a − b) = 2b2 and d | 2(a2 + b2) − 2b2 = 2a2. Hence,
d | gcd(2a2, 2b2) = 2 gcd(a2, b2) = 2 (Exercise 2.2.20(f)). Therefore, d is either
1 or 2.

(d) Let d = gcd(a+ b, a2 − ab+ b2) and recall that gcd(a, b) = 1 =⇒ gcd(a2, b2).
Since d | a+ b and d | a2−ab+ b2, then d | (a+ b)2− (a2−ab+ b2) = 3ab. But
since d | 3a(a+ b) and d | 3ab, we get that d | 3a2+3ab−3ab = 3a2. Similarly,
since d | 3b(a + b) and d | 3ab, we get that d | 3ab + 3b2 − 3ab = 3b2. Thus, d
divides both 3a2 and 3b2 and so d | gcd(3a2, 3b2) = 3 gcd(a, b) = 3. Therefore,
d = 1 or d = 3.

5. For positive integers a, b and n ≥ 1, show that

(a) If gcd(a, b) = 1, then gcd(an, bn) = 1. [Hint: See Problem A°(a), Section 2.2.]

(b) The relation an | bn implies that a | b. [Hint: Put d = gcd(a, b) and write
a = rd, b = sd, where gcd(r, s) = 1. By part (a), gcd(rn, sn) = 1. Show that
r = 1, whence a = d.]



CHAPTER 2. DIVISIBILITY THEORY IN THE INTEGERS 42

Solution

(a) First, let's prove by induction that if gcd(c1, c2) = 1, then gcd(c1, c
n
2 ) = 1 for

all n ≥ 1. When n = 1, it holds from our assumption. Suppose now that
gcd(c1, c

k
2) = 1 for some integer k ≥ 1, then using the fact that gcd(c1, c2) = 1

and Exercise 2.2.20(a), we get that gcd(c1, c
k+1
2 ) = 1. Thus, by induction,

gcd(c1, c
n
2 ) = 1 for all n ≥ 1. Taking c1 = a and c2 = b, we get that gcd(a, bn) =

1 for all n ≥ 1. Fixing n ≥ 1 and taking now c1 = bn and c2 = a, we get that
gcd(am, bn) = 1 for all m ≥ 1. In particular, if we take m = n, we get that
gcd(an, bn) = 1.

(b) Suppose that an | bn, then gcd(an, bn) = an. Let d = gcd(a, b), then there
exist relatively prime integers r and s such that a = rd and b = sd. Since
gcd(r, s) = 1, then gcd(rn, sn) = 1 by part (a). It follows that from the
equations an = rndn and bn = sndn, since rn and sn are relatively prime, then
dn = gcd(an, bn) = an = rndn. By cancelling out the dn's on both sides we
get rn = 1. Since both a and d are positive, then r must be positive as well
from the equation a = rd. Hence, from rn = 1 we conclude that r = 1. Thus,
a = d = gcd(a, b) | b.

6. Prove that if gcd(a, b) = 1, then gcd(a+ b, ab) = 1.

Solution Let d = gcd(a + b, ab), then d | a + b and d | ab. It follows that
d | a(a + b) − ab = a2. Similarly, d | b(a + b) − ab = b2. Thus, d | gcd(a2, b2) = 1
since it divides both a2 and b2.

7. For nonzero integers a and b, verify that the following conditions are equivalent:

(a) a | b (b) gcd(a, b) = |a| (c) lcm(a, b) = |b|

Solution Suppose that a | b, then |a| divides both a and b. Since any divisor of a
must divide |a|, then it follows that gcd(a, b) = |a|.

Suppose that gcd(a, b) = |a|, then the equation gcd(a, b) lcm(a, b) = |a| · |b|
becomes lcm(a, b) = |b|.

Suppose that lcm(a, b) = |b|, then |b| is a multiple of a. Equivalently, b is a
multiple of a which is another way of saying that a | b.

8. Find lcm(143, 227), lcm(306, 657) and lcm(272, 1479).

Solution For each of these, let's �nd their greatest common divisor �rst using the
Euclidean Algorithm.

227 = 1 · 143 + 84

143 = 1 · 84 + 59

84 = 1 · 59 + 25

59 = 2 · 25 + 9

25 = 2 · 9 + 7

9 = 1 · 7 + 2

7 = 3 · 2 + 1

2 = 2 · 1 + 0
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which shows that gcd(143, 227) = 1. It follows that

lcm(143, 227) = 143 · 227 = 32461.

Let's apply the same procedure to �nd lcm(306, 657):

657 = 2 · 306 + 45

306 = 6 · 45 + 36

45 = 1 · 36 + 9

36 = 4 · 9 + 0.

Hence, gcd(306, 657) = 9. It follows that

lcm(306, 657) =
306 · 657

9
= 306 · 73 = 22338.

Let's apply the same procedure to �nd lcm(306, 657):

657 = 2 · 306 + 45

306 = 6 · 45 + 36

45 = 1 · 36 + 9

36 = 4 · 9 + 0.

Hence, gcd(306, 657) = 9. It follows that

lcm(306, 657) =
306 · 657

9
= 306 · 73 = 22338.

Let's apply the same procedure to �nd lcm(272, 1479):

1479 = 5 · 272 + 119

272 = 2 · 119 + 34

119 = 3 · 34 + 17

34 = 2 · 17 + 0

Hence, gcd(272, 1479) = 17. It follows that

lcm(272, 1479) =
272 · 1479

17
= 16 · 1479 = 23664.

9. Prove that the greatest common divisor of two positive integers always divides
their least common multiple.

Solution Let a and b be two positive integers, then gcd(a, b) divides a which in
turns divides lcm(a, b). Hence, by transitivity, gcd(a, b) | lcm(a, b).

10. Given nonzero integers a and b, establish the following facts concerning
lcm(a, b):

(a) gcd(a, b) = lcm(a, b) if and only if a = b.

(b) If k > 0, then lcm(ka, kb) = k lcm(a, b).
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(c) If m is any common multiple of a and b, then lcm(a, b) | m.

[Hint: Put t = lcm(a, b) and use the Division Algorithm to write m = qt+ r,
where 0 ≤ r < t. Show that r is a common multiple of a and b.]

Solution

(a) Suppose that gcd(a, b) = lcm(a, b). Since gcd(a, b) | a and a | lcm(a, b) =
gcd(a, b), then a = gcd(a, b). Similarly, since gcd(a, b) | b and b | lcm(a, b) =
gcd(a, b), then gcd(a, b) = b. Therefore, a = gcd(a, b) = b. Conversely, if
a = b, then gcd(a, b) = a = b and lcm(a, b) = a = b which shows that
lcm(a, b) = gcd(a, b).

(b) Let k > 0 be an integer, then from the formula of the least common multiple
in terms of the greatest common divisor, we obtain:

lcm(ka, kb) =
k2ab

gcd(ka, kb)
= k

ab

gcd(a, b)
= k lcm(a, b).

(c) Suppose that m is a common multiple of a and b, then by the Division
Algroithm, there exist integers q and r such that m = q lcm(a, b) + r and
0 ≤ r < lcm(a, b). Suppose that r ̸= 0 and notice that r = m − q lcm(a, b)
must be divisible by both a and b since a and b divide both m and lcm(a, b),
it follows that lcm(a, b) ≤ r contradicting the fact that r < lcm(a, b). Thus,
r = 0 and so lcm(a, b) | m.

11. Let a, b, c be integers, no two of which are zero, and d = gcd(a, b, c). Show
that

d = gcd(gcd(a, b), c) = gcd(a, gcd(b, c)) = gcd(gcd(a, c), b).

Solution Let d0 = gcd(gcd(a, b), c), then d0 | gcd(a, b) and d0 | c. Since gcd(a, b)
divides a and b, then d0 also divides a and b. It follows that d0 is a common divisor
of a, b and c. To show that it is the greatest, let e be a common divisor of a, b and
c, since e divides both a and b, then it must divide gcd(a, b). Hence, e divides both
gcd(a, b) and c which implies that e ≤ gcd(gcd(a, b), c). Therefore, d = d0. The
proofs of the other equalities are strictly the same.

12. Find integers x, y, z satisfying

gcd(198, 288, 512) = 198x+ 288y + 512z.

[Hint: Put d = gcd(198, 288). Since gcd(198, 288, 512) = gcd(d, 512), �rst �nd
integers u and v for which gcd(d, 512) = du+ 512v.]

Solution First, let's �nd gcd(198, 288) using the Euclidean Algorithm:

288 = 1 · 198 + 90

198 = 2 · 90 + 18

90 = 5 · 18 + 0.
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Hence, gcd(198, 288) = 18. Let's use these equations to �nd the linear combination:

18 = 198− 2 · 90
= 198− 2(288− 198)

= 3 · 198− 2 · 288.

Now, let's �nd gcd(198, 228, 512) = gcd(18, 512) using the Euclidean Algorithm:

512 = 28 · 18 + 8

18 = 2 · 8 + 2

8 = 4 · 2 + 0.

Hence, gcd(198, 288, 512) = 1. Let's use these equations to �nd the linear combination:

2 = 18− 2 · 8
= 18− 2(512− 28 · 18)
= 57 · 18− 2 · 512.

Replacing 18 with the linear combination of 198 and 288 gives us

gcd(198, 288, 512) = 171 · 198− 114 · 288− 2 · 512

giving us x = 171, y = 114 and z = −2.
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2.4 The Diophantine Equation ax + by = c

1. Which of the following Diophantine equations cannot be solved ?

(a) 6x+ 51y = 22;

(b) 33x+ 14y = 115;

(c) 14x+ 35y = 93.

Solution

(a) Let's use the Euclidean Algorithm to �nd gcd(6, 51):

51 = 4 · 6 + 3

6 = 2 · 3 + 0.

Hence, gcd(6, 51) = 3. But 22 is not divisible by 3 so this equation cannot be
solved.

(b) Let's use the Euclidean Algorithm to �nd gcd(33, 14):

33 = 2 · 14 + 5

14 = 2 · 5 + 4

5 = 1 · 4 + 1

4 = 4 · 1 + 0.

Hence, gcd(33, 14) = 1. Since 115 is divisible by 1, then this equation can be
solved.

(c) Let's use the Euclidean Algorithm to �nd gcd(14, 35):

35 = 2 · 14 + 7

14 = 2 · 7 + 0.

Hence, gcd(14, 35) = 7. But 93 = 13 ·7+2 is not divisible by 7 so this equation
cannot be solved.

2. Determine all solutions in the integers of the following Diophantine equations:

(a) 56x+ 72y = 40;

(b) 24x+ 138y = 18;

(c) 221x+ 35y = 11.

Solution

(a) First, let's apply the Euclidean Algorithm to �nd gcd(56, 72):

72 = 1 · 56 + 16

56 = 3 · 16 + 8

16 = 2 · 8 + 0.
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Hence, gcd(56, 72) = 8. Since 40 = 5 · 8 is divisible by 8, then this equation
has integer solutions. First, let's �nd one solution by reversing the Euclidean
Algorithm:

8 = 56− 3 · 16
= 56− 3(72− 56)

= 4 · 56− 3 · 72.

Multiplying both sides by 5:

20 · 56− 15 · 72 = 40

gives us the solution x0 = 20, y0 = −15. By Theorem 2-9, we have that the
general solution is given by x = x0+

72
8
t = 20+9t and y = y0− 56

8
t = −15−7t

where t is an integer.

(b) First, let's apply the Euclidean Algorithm to �nd gcd(24, 138):

138 = 5 · 24 + 18

24 = 1 · 18 + 6

18 = 3 · 6 + 0.

Hence, gcd(24, 138) = 6. Since 18 is divisible by 6, then this equation has
integer solutions. First, let's �nd one solution by reversing the Euclidean
Algorithm:

6 = 24− 18

= 24− (138− 5 · 24)
= 6 · 24− 138.

Multiplying both sides by 3:

18 · 24− 3 · 138 = 18

gives us the solution x0 = 18, y0 = −3. By Theorem 2-9, we have that the
general solution is given by x = x0+

138
6
t = 18+23t and y = y0− 24

6
t = −3−4t

where t is an integer.

(c) First, let's apply the Euclidean Algorithm to �nd gcd(221, 35):

221 = 6 · 35 + 11

35 = 3 · 11 + 2

11 = 5 · 2 + 1

2 = 2 · 1 + 0.

Hence, gcd(221, 35) = 1. Since 11 is divisible by 1, then this equation has
integer solutions. First, let's �nd one solution by reversing the Euclidean
Algorithm:

1 = 11− 5 · 2
= 11− 5(35− 3 · 11)
= 16 · 11− 5 · 35
= 16(221− 6 · 35)− 5 · 35
= 16 · 221− 101 · 35.
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Multiplying both sides by 11:

176 · 221− 1111 · 35 = 11

gives us the solution x0 = 176, y0 = −1111. By Theorem 2-9, we have that
the general solution is given by x = x0 +

35
1
t = 176 + 35t and y = y0 − 221

1
t =

−1111− 221t where t is an integer.

3. Determine all solutions in the positive integers of the following Diophantine
equations:

(a) 18x+ 5y = 48;

(b) 54x+ 21y = 906;

(c) 123x+ 360y = 99;

(d) 158x− 57y = 7.

Solution

(a) First, let's apply the Euclidean Algorithm to �nd gcd(18, 5):

18 = 3 · 5 + 3

5 = 1 · 3 + 2

3 = 1 · 2 + 1

2 = 2 · 1 + 0.

Hence, gcd(18, 5) = 1. Since 48 is divisible by 1, then this equation has integer
solutions. First, let's �nd one solution by reversing the Euclidean Algorithm:

1 = 3− 2

= 3− (5− 3)

= 2 · 3− 5

= 2(18− 3 · 5)− 5

= 2 · 18− 7 · 5.

Multiplying both sides by 48:

96 · 18− 336 · 5 = 48

gives us the solution x0 = 96, y0 = −336. By Theorem 2-9, we have that the
general solution is given by x = x0+

5
1
t = 96+5t and y = y0− 18

1
t = −336−18t

where t is an integer. To �nd the positive solutions, it su�ces to solve the
following inequalities: x = 96 + 5t > 0 and y = −336 − 18t > 0. This is
equivalent to the inequality:

−96

5
< t < −336

18

Since t is an integer, then the only possible value tp have x, y > 0 is at t = −19.
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(b) First, let's apply the Euclidean Algorithm to �nd gcd(54, 21):

54 = 2 · 21 + 12

21 = 1 · 12 + 9

12 = 1 · 9 + 3

9 = 3 · 3 + 0.

Hence, gcd(54, 21) = 3. Since 906 is divisible by 3, then this equation has
integer solutions. First, let's �nd one solution by reversing the Euclidean
Algorithm:

3 = 12− 9

= 12− (21− 12)

= 2 · 12− 21

= 2(54− 2 · 21)− 21

= 2 · 54− 5 · 21.

Multiplying both sides by 302:

604 · 54− 1510 · 21 = 906

gives us the solution x0 = 604, y0 = −1510. By Theorem 2-9, we have that
the general solution is given by x = x0 +

21
3
t = 604 + 7t and y = y0 − 54

3
t =

−1510− 18t where t is an integer. To �nd the positive solutions, it su�ces to
solve the following inequalities: x = 604 + 7t > 0 and y = −1510 − 18t > 0.
This is equivalent to the inequality:

−604

7
< t < −1510

18

Since t is an integer, then t must range from −86 to −84 to have x, y > 0.

(c) First, let's apply the Euclidean Algorithm to �nd gcd(123, 360):

360 = 2 · 123 + 114

123 = 1 · 114 + 9

114 = 12 · 9 + 6

9 = 1 · 6 + 3

6 = 2 · 3 + 0.

Hence, gcd(123, 360) = 3. Since 99 is divisible by 3, then this equation has
integer solutions. First, let's �nd one solution by reversing the Euclidean
Algorithm:

3 = 9− 6

= 9− (114− 12 · 9)
= 13 · 9− 114

= 13(123− 114)− 114

= 13 · 123− 14 · 114
= 13 · 123− 14(360− 2 · 123)
= 41 · 123− 14 · 360.
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Multiplying both sides by 33:

1353 · 123− 462 · 360 = 99

gives us the solution x0 = 1353, y0 = −462. By Theorem 2-9, we have that the
general solution is given by x = x0 +

360
3
t = 1353 + 120t and y = y0 − 123

3
t =

−462 − 41t where t is an integer. To �nd the positive solutions, it su�ces to
solve the following inequalities: x = 1353+ 120t > 0 and y = −462− 41t > 0.
This is equivalent to the inequality:

−1353

120
< t < −462

41

Since t is an integer, then t must be both greater than or equal to -11 and less
than or equal to -12. Therefore, this equation has no solutions in the positive
integers.

(d) First, let's apply the Euclidean Algorithm to �nd gcd(158,−57) = gcd(158, 57):

158 = 2 · 57 + 44

57 = 1 · 44 + 13

44 = 3 · 13 + 5

13 = 2 · 5 + 3

5 = 1 · 3 + 2

3 = 1 · 2 + 1

2 = 2 · 2 + 0.

Hence, gcd(158,−57) = 1. Since 7 is divisible by 1, then this equation has
integer solutions. First, let's �nd one solution by reversing the Euclidean
Algorithm:

1 = 3− 2

= 3− (5− 3)

= 2 · 3− 5

= 2(13− 2 · 5)− 5

= 2 · 13− 5 · 5
= 2 · 13− 5(44− 3 · 13)
= 17 · 13− 5 · 44
= 17(57− 44)− 5 · 44
= 17 · 57− 22 · 44
= 17 · 57− 22(158− 2 · 57)
= 61 · 57− 22 · 158
= (−22) · 158 + (−61) · (−57).

Multiplying both sides by 7:

158 · (−154) + (−57) · (−427) = 7
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gives us the solution x0 = −154, y0 = −427. By Theorem 2-9, we have that
the general solution is given by x = x0− 57

1
t = −154−57t and y = y0− 158

1
t =

427 − 158t where t is an integer. To �nd the positive solutions, it su�ces to
solve the following inequalities: x = −154− 57t > 0 and y = 427− 158t > 0.
This is equivalent to the inequality:

t < min

(
−154

57
,
427

158

)
= −154

57
= −

(
2 +

40

57

)
.

Since t is an integer, then t must smaller than or equal to 3 to have x, y > 0.

4. If a and b are relatively prime positive integers, prove that the Diophantine
equation ax− by = c has in�nitely many solutions in the positive integers.
[Hint: There exist integers x0 and y0 such that ax0 + by0 = 1. For any integer t,
which is larger than both |x0|/b and |y0|/a, x = x0 + bt and y = −(y0 − at) are a
positive solution of the given equation.]

Solution First, let b′ = −b, then d = gcd(a, b′) = gcd(a, b) = 1. It follows that the
equation ax+b′y = c has a solution since c is divisible by 1. Let x0 and y0 be integers
such that ax0+b′y0 = c, then we know that for all integers t, x = x0+(b′/d)t = x0−bt
and y = y0 − (a/d)t = y0 − at are also solutions. If we want x and y to be positive,
we need t to satisfy the inequalities x0 > bt and y0 > at. Equivalently, we need t to
be less than min(x0/b, y0/a). Since there are in�nitely many such values of t, then
there are in�nitely many positive solutions to the equation ax− by = c.

5.

(a) Prove that the Diophantine equation ax+by+cz = d is solvable in the integers
if and only if gcd(a, b, c) divides d.

(b) Find all solutions in the integers of 15x+12y+30z = 24. [Hint: Put y = 3s−5t
and z = −s+ 2t.]

Solution

(a) First, suppose that there are integers x0, y0 and z0 such that ax0+by0+cz0 = d,
then d must be divisible by gcd(a, b, c) since gcd(a, b, c) divides a, b, c, and
hence, any of their linear combination, such as d. Conversely, suppose that d
is divisible by gcd(a, b, c) such that d = s · gcd(a, b, c). Recall from Exercise
2.3.11 that gcd(a, b, c) = gcd(gcd(a, b), c), hence, there exist integers x′ and z0
such that gcd(a, b, c) = gcd(a, b)x′ + cz0. Similarly, there exist integers x0 and
y0 such that gcd(a, b) = ax0+by0 and so it follows that gcd(a, b, c) = a(x′x0)+
b(x′y0) + cz0. Thus, we have d = a(sx′x0) + b(sx′y0) + c(sz0). Therefore, the
equation ax+ by + cz = d is solvable in the integers.

(b) (This solution does not follow the hint.) First, �x z = t and consider the
equation 15x + 12y = 24 − 30t. Since gcd(15, 12) = 3 gcd(5, 4) = 3 divides
24− 30t = 3(8− 10t), then the equation is solvable in the integers. To �nd a
solution, notice that from 15− 12 = 3, we have (8− 10t) · 15− (8− 10t) · 12 =
24−30t which gives us the particular solution x0 = 8−10t and y0 = −8+10t.
It follows that the general solution is given by x = 8 − 10t + 4s and y =
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−8 + 10t− 5s. Therefore, x = 8− 10t+ 4s, y = −8 + 10t− 5s and z = t are
solutions to the original equation for all integers s and t. We can prove that
every solution can be written in this form as follows: suppose that the integers
x, y and z satisfy the equation 15x+12y+30z = 24, then equivalently, x and
y satisfy the equation 15x+12y = 24−30z. Since x0 = 8−10z, y0 = −8+10z
is a particular solution to that equation, then there must be an integer s0 such
that x = 8−10z+4s0 and y = −8+10z−5s0. Thus, if we let t = z and s = s0,
then x, y and z are indeed of the form x = 8 − 10t + 4s, y = −8 + 10t − 5s
and z = t. Therefore, these are all the integer solutions to the equation.

6.

(a) A man has $4.55 in change composed entirely of dimes and quarters. What are
the maximum and minimum number of coins that he can have? Is it possible
for the numbers of dimes to equal the number of quarters?

(b) The neighborhood theater charges $1.80 for adult admissions and 75 cents for
children. On a particular evening, the total receipts were $90. Assuming that
more adults than children were present, how many people attended?

(c) A certain number of sixes and nines are added to give a sum of 126; if the
number of sixes and nines are interchanged, the new sum is 114. How many
of each were there originally?

Solution

(a) First, notice that we can think of this problem as being the same as solving the
equation 10x + 25y = 455 where x corresponds to the number of dimes, and
y corresponds to the number of quarters. Since gcd(10, 25) = 5 gcd(2, 5) =
5 divides 455 = 5 · 91, then the equation is solvable in the integers. By
multiplying the equation 10 · (−2) + 25 = 5 by 91, we get the particular
solution x0 = −182, y0 = 91. It follows that the general solution is given by
x = −182 + 5t, y = 91 − 2t where t is an integer. Since we want both x
and y to be positive, then we want the following inequalities to be satis�ed
simultaneously: x = −182 + 5t > 0, y = 91 − 2t > 0. Equivalently, t must
satisfy 36.4 = 182

5
< t < 91

2
= 45.5. Since t is an integer, then t must

range from 37 to 45. The total number of coins can be expressed by x + y =
−182 + 5t+ 91− 2t = 3t− 91. Since x+ y is an increasing function of t, then
the maximum number of coins is 44 (at t = 45) and the minimum number of
coins is 20 (at t = 37). For the number of dimes and quarters to be the same,
we must have x = y which is equivalent to −182 + 5t = 91− 2t. Solving for t,
we get t = 39. Thus, a possible solution is x = y = 13.

(b) First, if we denote the number of adults by x and the number of children by y,
then it su�ces to solve the equation 180x+75y = 9000. To do so, notice that
gcd(180, 75) = 15 gcd(12, 5) = 15. From the equation (−2)·180+5·75 = 15, we
get the equation (−1200) · 180+3000 · 75 = 9000 which gives us the particular
solution x0 = −1200 and y0 = 3000. It follows that the general solution is
given by x = −1200 + 5t and y = 3000 − 12t where t is an integer. Since
there are more adults than children, then this translates into x > y > 0.
In terms of t, then inequality x > y becomes t > 4200

17
, and the inequality
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y > 0 becomes 3000
12

> t. Hence, t must satisfy 4200
17

< t < 3000
12

. Since t is
an integer, then it ranges from 248 to 250. Since the total number of people
is x + y = −1200 + 5t + 3000 − 12t = 1800 − 7t, then in total, either 64 (at
t = 248), 57 (at t = 249) or 50 (at t = 250) people came.

(c) We need to solve the equation 6x+ 9y = 126 such that 6y + 9x = 114. Since
gcd(6, 9) = 3 and (−1)·6+1·9 = 3, then (−42)·6+42·9 = 126 which gives us the
particular solution x0 = −42 and y0 = 42. It follows that the general solution
is given by x = −42+ 3t and y = 42− 2t where t is an integer. Now, plugging
these values in the second equation gives us 6(42 − 2t) + 9(−42 + 3t) = 114.
This equation can be simpli�ed into 15t = 240, and so t = 16. Therefore, we
get x = 6 and y = 10 which corresponds to six 6s and ten 9s.

7. A farmer purchased one hundred head of livestock for a total cost of $4000.
Prices were as follow: calves, $120 each; lambs, $ 50 each; piglets, $25 each. If the
farmer obtained at least one animal of each type how many did he buy ?

Solution If we denote by x the number of calves, by y the number of lambs, and by
z the number of piglets, then we need to solve the equation 120x+50y+25z = 4000
where x, y, z > 0 and x+y+z = 100. Since we can rewrite the previous equation as
z = 100−x−y, then it su�ces to solve the equation 120x+50y+25(100−x−y) =
4000. This equation can be simpli�ed into 19x+5y = 300. From 19 ·(−1)+5 ·4 = 1,
we get 19 · (−300)+5 ·1200 = 300 which gives us the particular solution x0 = −300,
y0 = 1200. It follows that the general solution is given by x = −300 + 5t, y =
1200−19t where t is an integer. Since we want x, y, z > 0, then we need to solve the
following inequalities in terms of t: −300+5t > 0, 1200−19t > 0 and 100 > 900−14t.
From these inequalities, we get that t must range from 61 to 63. It follows that we
must have one of the three following cases: (t = 61) 5 calves, 41 lambs, 54 piglets;
(t = 62) 10 calves, 22 lambs, 68 piglets; (t = 63) 15 calves, 3 lambs, 82 piglets.

8. When Mr. Smith cashed a check at his bank, the teller mistook the number of
cents for the number of dollars and vice versa. Unaware of this, Mr. Smith spent 68
cents and then noticed to his surprise that he had twice the amount of the original
check. Determine the smallest value for which the check could have been written.
[Hint: If x is the number of dollars and y is the number of cents in the check, then
100y + x− 68 = 2(100x+ y).]

Solution Let x be the number of dollars and y be the number of cents, then
the value of the check is given by x + 1

100
y. Thus, we can translate the situation

into the equation y + 1
100

x − 68
100

= 2(x + 1
100

y). Multiplying both sides by 100
gives us 100y + x − 68 = 2(100x + y). Putting all the terms together gives us
the equation −199x + 98y = 68. Let's apply the Euclidean Algorithm to �nd
gcd(−199, 98) = gcd(199, 98):

199 = 2 · 98 + 3

98 = 32 · 3 + 2

3 = 1 · 2 + 1

2 = 2 · 1 + 0.
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From that, we get

1 = 3− 2

= 3− (98− 32 · 3)
= 33 · 3− 98

= 33(199− 2 · 98)− 98

= 33 · 199− 67 · 98
= (−33) · (−199) + (−67) · 98.

By multiplying both sides by 68, we get

(−199) · (−2244) + 98 · (−4556) = 68

which gives us the particular solution x0 = −2244, y0 = −4556. It follows that
the general solution is given by x = −2244 + 98t, y = −4556 + 199t where t is an
integer. From the fact that x, y > 0, we get the following inequalities for t: t > 2244

98

and t > 4556
199

. Since t is an integer, then it follows that t ≥ 23. But recall that y
represents the number of cents so we also have the inequality y < 100. In terms of
t, this inequality becomes t < 4656

199
. Since t is an integer, then it means that t ≤ 23.

Combining the two inequalities, we get that t = 23. Therefore, the value of the
check is $10.21.

9. Solve each of the puzzle-problems below:

(a) Alcuin of York, 775. A hundred bushels of grain are distributed among 100
persons in such a way that each man receives 3 bushels, each woman 2 buchels,
and each child 1/2 bushel. How many men, women, and children are there ?

(b) Mahaviracarya, 850. There were 63 equal piles of plantain fruit put together
and 7 single fruits. They were divided evenly among 23 travelers. What is
the number of fruits in each pile? [Hint: Consider the Diophantine equation
63x+ 7 = 23y].

(c) Yen Kung, 1372. We have an unknown number of coins. If you make 77
strings of them, you are 50 coins short; but if you make 78 strings, it is
exact. How many coins are there? [Hint: If N is the number of coins, then
N = 77x+ 27 = 78y for integers x and y.]

(d) Christo� Rudolf, 1526. Find the number of men, women and children in a
company of 20 persons if together they pay 20 coins, each man paying 3, each
woman 2, and each child 1/2.

(e) Euler, 1770. Divide 100 into two summands such that one is divisible by 7
and the other by 11.

Solution

(a) Let x be the number of men, y be the number of women, and z be the number
of child, then we want to solve the equation 3x+2y+ 1

2
z = 100. Since we know

that x + y + z = 100, then we can replace z by 100 − x − y in the equation
to obtain 5x + 3y = 100. From the equation 5 · (−1) + 3 · 2 = 1, we get
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5 · (−100) + 3 · 200 = 100 by multiplying both sides by 100. This gives us the
particular solution x0 = −100, y0 = 200. It follows that the general solution
is given by x = −100 + 3t, y = 200− 5t where t is an integer. Since we want
x, y, z ≥ 0, then we get the following inequalities in terms of t: t ≥ 100

3
, t ≤ 200

5
,

t ≥ 0. Hence, t must range from 34 to 40. Thus, the possible triplets (x, y, z)
are the following: (2, 30, 68), (5, 25, 70), (8, 20, 72), (11, 15, 74), (14, 10, 76),
(17, 5, 78), (20, 0, 80).

(b) Let x be the number of fruits in each pile, then we should have 23 | 63x + 7,
or 63x + 7 = 23y where x, y ≥ 1. This can be rewritten as 63x − 23y = −7.
Let's apply the Euclidean Algorithm to �nd gcd(63,−23) = gcd(63, 23):

63 = 2 · 23 + 17

23 = 1 · 17 + 6

17 = 2 · 6 + 5

6 = 1 · 5 + 1

5 = 5 · 1 + 0.

Reversing the algorithm gives us 63 · (−4)+ (−23) · (−11) = 1, from which we
get 63 · 28 + (−23) · 77 = −7 by multiplying both sides by −7. Thus, we have
the particular solution x0 = 28, y0 = 77. It follows that the general solution
is given by x = 28 − 23t, y = 77 − 63t where t is an integer. Since we want
x, y ≥ 1, then we must have t ≤ 1. Therefore, all the possible values of fruits
in each pile are 28− 23t where t ≤ 1.

(c) Let N be the number of coins, then from the statement of part (c), we have
that N = 77x+27 and N = 78y for some integers x and y. Moreover, we must
have N > 0. Thus, we get the equation 77x+27 = 78y which can be rewritten
as 77x − 78y = −27. Since 77 · (−1) + (−78) · (−1) = 1, then multiplying
both sides by −27 gives us 77 · 27 + (−78) · 27 = −27. Hence, we have the
particular solution x0 = y0 = 27. It follows that the general solution is given
by x = 27− 78t, y = 27− 77t where t is an integer. Since N > 0, then t ≤ 0.
It follows that a possible value for N is N = 2106 which happens when t = 0.
More generally, the possible values of N are precisely 78(27−77t) where t ≤ 0.

(d) Let x be the number of men, y be the number of women, and z be the number
of children, then we have the two equations 3x+2y+ 1

2
z = 20 and x+y+z = 20.

By multiplying the �rst equation by 2 on both sides and plugging z = 20−x−y,
we obtain 6x + 4y + (20 − x − y) = 40. After some simpli�cations, this
equation becomes 5x + 3y = 20. From the equation 5 · (−1) + 3 · 2 = 1, we
get 5 · (−20) + 3 · 40 = 20 by multiplying both sides by 20. This gives us the
particular solution x0 = −20, y0 = 40. It follows that the general solution
is given by x = −20 + 3t, y = 40 − 5t where t is an integer. Since we want
x, y, z ≥ 0, then we get the following inequalities in terms of t: t ≥ 20

3
, t ≤ 40

5
,

t ≥ 0. Hence, t must be either 7 or 8. Thus, the possible triplets (x, y, z) are
the following: (1, 5, 14), (4, 0, 16).

(e) This problem can be simply solved by considering the equation 100 = 7x+11y.
Since 7 · (−3) + 11 · 2 = 1, then 7 · (−300) + 11 · 200 = 100. Hence, we get the
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particular solution x0 = −300, y0 = 200. It follows that the general solution
is given by x = −300 + 11t, y = 200 − 7t where t is an integer. If we want
x, y ≥ 0, then this is only satis�ed when t = 28. In that case, we have x = 8
and y = 4. This gives us the solution 100 = 56 + 44.



Chapter 3

Primes and Their Distribution

3.1 The Fundamental Theorem of Arithmetic

1. It has been conjectured that there are in�nitely many primes of the form n2−1.
Exhibit �ve such primes.

Solution When n = 2, we have n2 − 2 = 2 which is prime. When n = 3, we have
n2− 2 = 7 which is prime. When n = 5, we have n2− 2 = 23 which is prime. When
n = 7, we have n2−2 = 47 which is prime. When n = 9, we have n2−2 = 79 which
is prime.

2. Give an example to show that the following conjecture is not true: Every
positive integer can be written in the form p + a2, where p is either a prime or 1,
and a ≥ 0.

Solution Suppose that 25 = p+a2, then 25−a2 is a prime number for some a ≥ 0.
Moreover, 0 ≤ a ≤ 5 since otherwise, 25 − a2 is negative. However, when a = 0,
25− a2 = 25 is not a prime; when a = 1, 25− a2 = 24 is not a prime; when a = 2,
25− a2 = 21 is not a prime; when a = 3, 25− a2 = 16 is not a prime; when a = 4,
25 − a2 = 9 is not a prime; when a = 5, 25 − a2 = 0 is not a prime. Therefore, 25
cannot is not of the form p+ a2 contradicting the conjecture.

3. Prove each of the assertions below:

(a) Any prime of the form 3n+ 1 is also of the form 6m+ 1.

(b) Each integer of the form 3n+ 2 has a prime factor of this form.

(c) The only prime of the form n3−1 is 7. [Hint: Write n3−1 as (n−1)(n2+n+1).]

(d) The only prime p for which 3p+ 1 is a perfect square is p = 5.

(e) The only prime of the form n2 − 4 is 5.

Solution

(a) Suppose that p = 3n + 1, then n is either of the form 2m or 2m + 1. If
n = 2m + 1, then p = 3(2m + 1) + 1 = 2(3m + 2) which is impossible. Thus,
p = 6m+ 1.

57
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(b) Consider the integer k = 3n+ 2. If one of the prime factor is of the form 3m,
then will be automatically of the form 3m. Suppose that none of the prime
factors of k are of the form 3m + 2, then from the previous observation, it
follows that all of its prime factors must be of the form 3m+1. However, from
the fact that

(3k1 + 1)(3k2 + 1) = 3(3k1k2 + k1 + k2) + 1,

then by induction, we have that k must also be of the form 3m + 1, a
contradiction. Therefore, k must have a prime of the form 3m+ 2.

(c) Suppose that n3−1 = (n−1)(n2+n+1) is prime, then either n−1 or n2+n+1
is equal to 1. In the �rst case, we get that n = 2 and so that n3− 1 = 7 which
is indeed a prime. In the second case, we get that n = 0 or n = 1. If n = 0,
then n3 − 1 = −1 which is not a prime. Therefore, the only prime of the form
n3 − 1 is 7.

(d) Suppose that 3p + 1 is a perfect square, then 3p + 1 = a2. Equivalently, this
implies that 3p = (a−1)(a+1). Since 3 is a prime number, then either 3 | a−1
or 3 | a + 1. If 3 | a − 1, then a − 1 = 3k and so 3p = 3k(3k + 2). In that
case, p = k(k3k + 2) which implies that either k = 1 or 3k + 2 = 1. Since
3k+2 ̸= 1 for any k, then we must have k = 1 and hence p = 5. Suppose now
that 3 | a+ 1, then a+ 1 = 3k and so 3p = 3k(3k − 2). Again, with the same
argument as before, it follows that p = 5. Therefore, p = 5 is the only prime
number for which 3p+ 1 is a perfect square.

(e) Suppose that p = n2 − 4 = (n − 2)(n + 2) is prime, then either n − 2 = 3
or n + 2 = 1. In the �rst case, we get that n = 3 and hence, p = 5 which is
indeed prime. In the second case, we get n = −1 and hence p = −3 which is
not a prime. Therefore, the only such prime is p = 5.

4. If p ≥ 5 is a prime number, show that p2 + 2 is composite. [Hint: p takes one
of the forms 6k + 1 or 6k + 5.]

Solution Notice that p cannot be of the form 6k, 6k + 2 = 2(3k + 1), 6k + 3 =
3(2k+ 1) or 6k+ 4 = 2(3k+ 2) because in all of these cases, since p ≥ 5, k ̸= 0 and
so it is composite. If p = 6k + 1, then

p2 + 2 = (6k + 1)2 + 2 = 62k2 + 2 · 6k + 1 + 2 = 3(18k2 + 4k + 1)

which is composite. Similarly, if p = 6k + 5, then

p2 + 2 = (6k + 5)2 + 2 = 62k2 + 2 · 6k + 25 + 2 = 3(18k2 + 4k + 9)

which is composite. Therefore, p2 + 2 is composite for all prime numbers p ≥ 5.

5.

(a) Given that p is a prime and p | an, prove that pn | an.

(b) If gcd(a, b) = p, a prime, what are the possible values of gcd(a2, b2), gcd(a2, b)
and gcd(a3, b2) ?
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Solution

(a) Since p is a prime and p | an, then p must divide a. It follows that pn | an.

(b) We know that gcd(a, b) = 1 implies that gcd(a2, b2) = 1 and that gcd(ka, kb) =
k gcd(a, b). It follows that in this case, gcd(a

p
, b
p
) = 1 and so gcd(a

2

p2
, b2

p2
) = 1

which implies that gcd(a2, b2) = p2.

Similarly, since gcd(a, b) = p, then a = pk1 and b = pk2 where gcd(k1, k2).
It follows that gcd(k2

1, k2) = 1 (Exercise 2.2.20(f)) and so there exist integers
x and y such that k2

1x + k2y = 1. Multiplying both sides by p gives us that
(pk2

1)x+k2(py) = p and so gcd(pk2
1, k2) | p. It follows that gcd(pk2

1, k2) is either
1 or p and so that gcd(a2, b) is either p or p2. It is impossible to lower the
number of possibilities because when a = p and b = p, we have gcd(a2, b) = p
and when a = p and b = p2, we have gcd(a2, b) = p2. Therefore, p and p2 are
precisely the possible values of gcd(a2, b).

For the third value, since gcd(a, b) = p, then a = pk1 and b = pk2 where
gcd(k1, k2). It follows that gcd(k3

1, k
2
2) = 1 (Exercise 2.2.20(f)) and so there

exist integers x and y such that k3
1x + k2

2y = 1. Multiplying both sides by
p2 gives us that (pk3

1)x + k2
2(py) = p and so gcd(pk3

1, k
2
2) | p. It follows that

gcd(pk3
1, k

2
2) is either 1 or p and so that gcd(a3, b2) is either p2 or p3. It is

impossible to lower the number of possibilities because when a = p and b = p,
we have gcd(a3, b2) = p2 and when a = p and b = p2, we have gcd(a3, b2) = p3.
Therefore, p2 and p3 are precisely the possible values of gcd(a3, b2).

6. Establish each of the following statements:

(a) Every integer of the form n4 + 4, with n > 1, is composite.

[Hint: Write n4 + 4 as a product of two quadratic factors.]

(b) If n > 4 is composite, then n divides (n− 1)!.

(c) Any integer of the form 8n + 1, where n ≥ 1, is composite.

[Hint: 2n + 1 | 23n + 1].

(d) Each integer n > 11 can be written as the sum of two composite numbers.
[Hint: If n is even, say n = 2k, then n− 6 = 2(k − 3); for n odd, consider the
integer n− 9.]

Solution

(a) First, notice that n4 + 4 = (n2 − 2n + 2)(n2 + 2n + 2) for all n. Since both
factors are strictly bigger than 1 when n > 1, then n4+4 must be a composite
number.

(b) By the Fundamental Theorem of Arithmetic, we know that n = pk11 · ... · pkmm .
If m > 1, then we can de�ne the two distinct (by the Fundamental Theorem
of Arithmetic) integers a = pk11 and b = pk22 · ... · pkmm such that a, b > 1 and
ab = n. Since these factors are non-trivial, then they must satisfy a, b ≤ n−1.
Since they are distinct and less than n− 1, then we can write

(n− 1)! = 1 · 2 · ... · a · ... · b · ... · (n− 1)
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which shows that n = ab | (n− 1)!. If m = 1, then n = pk. If k > 2, then we
can let a = p, b = pk−1 such that a ̸= b, a, b < n− 1 and ab = n. Hence, with
the same argument as above, we can conclude that n = ab | (n− 1)!. If k ̸> 2,
then k = 2 since k = 1 would imply that n is not composite. Hence, the last
case is n = p2. Notice that p ̸= 2 since otherwise, n = 4. Here, let a = p and
b = 2p and notice that both numbers are distinct and less than n− 1. Hence,
we must have that 2n = ab | (n − 1)! and so that n | (n − 1)!. Therefore, in
all possible cases, n | (n− 1)!.

(c) If we replace x with 2n in the relation x3 + 1 = (x + 1)(x2 − x + 1), we get
that 2n +1 | 23n +1 = 8n +1. It follows that 8n +1 is always composite when
n ≥ 1.

(d) Let n > 11 be an integer. Suppose �rst that n = 2k, then

n = (n− 6) + 6 = 2(k − 3) + 2 · 3.

Since both 2(k− 3) and 2 · 3 are composite (if 2(k− 3) = 0, then 11 < n = 6),
then n is indeed the sum of two composite numbers. Similarly, if n = 2k + 1,
then

n = (n− 9) + 9 = 2(k − 4) + 3 · 3.

Since both 2(k− 4) and 3 · 3 are composite (if 2(k− 4) = 0, then 11 < n = 9),
then n is again the sum of two composite numbers. Therefore, it holds for all
integers n > 11.

7. Find all prime numbers that divide 50!.

Solution First, notice that every prime number less than 50 must divide 50! by
the de�nition of n!. Moreover, let p be a prime number dividing 50!, then p must
divide a number less than 50, and hence, p must be less than 50. Therefore, the
prime numbers dividing 50! are precisely the prime numbers that are less than 50:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47.

8. If p ≥ q ≥ 5 and p and q are both primes, prove that 24 | p2 − q2.

Solution Since p and q are prime, then both are either of the form 4k + 1 or
4k + 3. If p = 4r + 1 and q = 4t + 1, then p + q = 4(r + t) + 2 = 2(2(r + t) + 1)
and p − q = 4(r − t), and so 8 | (p + q)(p − q) = p2 − q2. If p = 4r + 3 and
q = 4t + 1, then p + q = 4(r + t + 1) and p − q = 4(r − t) + 2 = 2(2(r − t) + 1),
and so 8 | (p + q)(p − q) = p2 − q2. The same calculation proves that 8 | p2 − q2

when p = 4r + 1 and q = 4t + 3. Finally, when p = 4r + 3 and q = 4t + 3, then
p+ q = 4(r+ t+1)+ 2 = 2(2(r+ t+1)+ 1) and p− q = 4(r− t), and so 8 | p2 − q2.
Therefore, in all possible cases, 8 | p2 − q2.

Moreover, since p and q are primes, then both are of the form 3k + 1 or 3k + 2.
If both are of the form 3k+1, then p− q is of the form 3k and so 3 | p2 − q2. If one
is of the form 3k + 1 and the other is of the form 3k + 2, then p + q is of the form
3k and so 3 | p2 − q2. If both are of the form 3k + 2, then p − q is of the form 3k
and so 3 | p2 − q2. Therefore, in all cases, 3 | p2 − q2.
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From this, we get that both 3 and 8 divide p2 − q2. Since gcd(3, 8) = 1, then
24 = 3 · 8 | p2 − q2.

9.

(a) An unanswered question is whether there are in�nitely many primes which
are 1 more than a power of 2, such as 5 = 22 + 1. Find two or more of these
primes.

(b) A more general conjecture is that there exist in�nitely many primes of the
form n2+1; for example, 257 = 162+1. Exhibit �ve more primes of this type.

Solution

(a) We have 20 + 1 = 2 and 21 + 1 = 3 which are both primes.

(b) We have 11 + 1 = 2, 22 + 1 = 5, 42 + 1 = 17, 62 + 1 = 37 and 102 + 1 = 101
which are all primes.

10. If p ̸= 5 is an odd prime, prove that either p2 − 1 or p2 + 1 is divisible by 10.
[Hint: p takes one of the forms 10k + 1, 10k + 3, 10k + 7 or 10k + 9.]

Solution Since p is a prime, then it must be of the form 10k + 1, 10k + 3,
10k + 7 or 10k + 9 since otherwise, it would be composite. If p = 10k + 1,
then p2 − 1 = 10(10k2 + 2k) and so it is divisible by 10. If p = 10k + 3, then
p2 + 1 = 10(10k2 + 6k + 1) and so it is divisible by 10. If p = 10k + 7, then
p2 + 1 = 10(10k2 + 17k + 5) and so it is divisible by 10. If p = 10k + 9, then
p2 − 1 = 10(10k2 + 18k + 8) and so it is divisible by 10. Therefore, it holds for all
primes p ̸= 5.

11. Another unproven conjecture is that there are an in�nitude of primes which
are 1 less than a power of 2, such as 3 = 22 − 1.

(a) Find four more of these primes.

(b) If p = 2k − 1 is prime, show that k is an odd integer, except when k = 2.
[Hint: 3 | 4n − 1 for all n ≥ 1.]

Solution

(a) We have that 23 − 1 = 7, 25 − 1 = 31, 27 − 1 = 127 and 213 − 1 = 8191 are all
prime numbers.

(b) Let's prove the contrapositive. Suppose that k = 2m is an even integer not
equal to 2, then

2k − 1 = (3 + 1)m − 1 = 3
m∑

n=1

(
m

n

)
3n−1

is composite since it is divisible by 3 and it is not equal to 3 (the sum is not
equal to 1 since m > 1).
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12. Find the prime factorization of the integers 1234, 10140, and 36000.

Solution Since 1234 is even, then we can write it as 2 · 617. Since 617 is prime,
then the prime factorization is 1234 = 2 · 617.

Since 10140 is divisible by 10 and 10 = 2 · 5 where both 2 and 5 are prime, then
we can write 10140 as 2 · 5 · 1014. Since 1014 is even, then we can write it as 2 · 507.
Since 507 is divisible by 3, then we can write it as 3 · 169. Since 169 is 132 where 13
is prime, then we can write 10140 = 2 · 5 · 2 · 3 · 132 = 22 · 3 · 5 · 132 where all the
factors are prime numbers.

For 36000, simply notice that

36000 = 36 · 1000 = 62 · 103 = 22 · 32 · 23 · 53 = 25 · 32 · 53.

13. If n > 1 is an integer not of the form 6k + 3, prove that n2 + 2n is composite.
[Hint: Show that either 2 or 3 divides n2 + 2n.]

Solution First, notice that if n is even, then both n2 and 2n are even and so is
their sum. Thus, n2+2n in that case. The only cases left are n = 6k+1 and 6k+5.
But �rst, let's prove that 3 | 2n + 1 when n is odd. It follows from the fact that

2n + 1 = (3− 1)n + 1

=
n∑

l=0

(
n

l

)
(−1)n−l3l + 1

= 3
n∑

l=1

(
n

l

)
(−1)l3l−1 − 1 + 1

= 3
n∑

l=1

(
n

l

)
(−1)l3l−1.

Hence, if n = 6k+1, then both terms in the sum n2+2n = 3(12k2+4k)+(2n+1) are
divisible by 3 since n is odd. Hence, n2 + 2n is composite. Similarly, both terms in
the sum n2+2n = 3(12k2+4k+4)+(2n+1) are divisible by 3 and so it is composite.

14. It has been conjectured that every even integer can be written as the di�erence
of two consecutive primes in in�nitely many ways. For example,

6 = 29− 23 = 137− 131 = 599− 593 = 1019− 1013 = . . . .

Express the integer 10 as the di�erence of two consecutive primes in �fteen ways.
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Solution By looking at the tables, we get

10 = 149− 139

= 191− 181

= 251− 241

= 293− 283

= 347− 337

= 419− 409

= 431− 421

= 557− 547

= 587− 577

= 641− 631

= 701− 691

= 719− 709

= 797− 787

= 821− 811

= 839− 829.

15. Prove that a positive integer a > 1 is a square if and only if in the canonical
form of a all the exponents of the primes are even integers.

Solution First, suppose that a is a square, then a = n2 for some integer. Write
n = pk11 · ... · pkmm , then by the rule of exponents, we get a = p2k11 · ... · p2kmm and so all
the exponents are even in the canonical form of a.

Conversely, suppose that a has the following canonical form: a = p2k11 · ... · p2kmm ,
then by the rules of exponents, if we let n = pk11 · ... · pkmm , we get that a = n2 and so
a is a square.

16. An integer is said to be square-free if it is not divisible by the square of any
integer greater than 1. Prove that

(a) an integer n > 1 is square-free if and only if n can be factored into a product
of disctint primes.

(b) every integer n > 1 is the product of a square-free integer and a perfect square.
[Hint: If n = pk11 pk22 ·...·pkss is the canonical factorization of n, write ki = 2qi+ri
where ri = 0 or 1 according as ki is even or odd.]

Solution

(a) First, suppose that n is square-free and write it as n = pk11 · ... · pkmm . Suppose
that there is a i between 1 and m such that ki > 1, then we would get that
p2i | n which contradicts the fact that n is square-free. Thus, ki = 1 for all
1 ≤ i ≤ m and so n = p1 · · · · · pm. Hence, n is a product of distinct primes.

Conversely, suppose that n is a product of distinct primes, then n = p1 ·· · ··pm.
By contradiction, if n is not square-free, then there is an integer d ̸= 1 such
that d2 | n. Since d ̸= 1, then there must be a prime p such that p | d and so
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p2 | n = p1 · · · · · pm. By the property of prime numbers, there is a i such that
p | pi but since they are primes, we must have p = pi. Canceling these two
one both sides, we get that p | p1 . . . pi−1 · pi+1 . . . pm. Again, by the property
of prime numbers, we get that p = pk for some k ̸= i. But this implies that
pi = pk which is impossible since we assumed that the pl's are distinct. Thus,
by contradiction, n is square-free.

(b) Let n = pk11 · ... · pkmm be an integer. For all ki, de�ne qi and ri as the unique
integers such that ki = 2qi + ri where ri = 0, 1 (by the Division Algroithm).
Denote by i1, ..., is the integers i such that ri = 1, and denote by j1, ..., jt the
integers j such that rj = 0, then we can rewrite n as

(pi1 . . . pis) · (p
qi1
i1

. . . p
qis
is

· pqj1j1
. . . p

qjt
jt
)2.

Hence, if we let a = pi1 . . . pis and b = p
qi1
i1

. . . p
qis
is

· pqj1j1
. . . p

qjt
jt
, we get that a

is square-free using part (a). Therefore, n = a · b2 where a is a square-free
integer.

17. Verify that any integer n can be expressed as n = 2km, where k ≥ 0 and m is
an odd integer.

Solution First, write n in its canonical form: n = pk11 · ... · pkss where the pi's are
disctint and such that pi < pi+1. If p1 ̸= 2, then n cannot be even because otherwise,
2 | pk11 · ... · pkmm implies that 2 = pi for some i since 2 and the pi's are prime, but
i ̸= 1 since p1 ̸= 2 and i > 1 because we would get 2 < p1 < pi = 2. Thus, n is odd
and so we can write n = 20n where n is odd. Suppose now that p1 = 2, then we
can let m = pk22 · ... · pkss where p2 ̸= 2. As we showed above, m mut be odd and so
n = 2k1m where m is odd and k1 ≥ 0.

18. Numerical evidences makes it plausible that there are in�nitely many primes
p such that p+ 50 is also prime. List �fteen of these primes.

Solution By looking at the tables, we get that the following primes p are such that
p+ 50 is also a prime:

3, 11, 17, 23, 29, 47, 53, 59, 89, 101, 107, 113, 131, 149, 173.
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3.2 The Sieve of Eratosthenes

1. Determine whether the integer 701 is prime by testing all primes p ≤
√
701 as

possible divisors. Do the same for the integer 1009.

Solution We know that 701 is between 262 = 676 and 272 = 729, hence, the primes
p less than

√
701 are precisely 2, 3, 5, 7, 11, 13, 17, 19 and 23. We can easily see

that 701 is not divisible by 2, 3, 5 or 7. When p = 11, we have 701 = 11 · 63 + 8 so
11 doesn't divide 701. When p = 13, we have 701 = 13 · 53+12 so 13 doesn't divide
701. When p = 17, we have 701 = 17 ·41+4 so 17 doesn't divide 701. When p = 19,
we have 701 = 19 · 36 + 17 so 19 doesn't divide 701. Finally, when p = 23, we have
701 = 23 · 30 + 11 so 23 doesn't divide 701. Therefore, 701 is a prime number.

Let's apply the same method to determine if 1009 is a prime number. We know
that 1009 is between 312 = 961 and 322 = 1024, hence, the primes p less than

√
1009

are precisely 2, 3, 5, 7, 11, 13, 17, 19, 23 and 29. We can easily see that 1009 is not
divisible by 2, 3 and 5. When p = 7, we have 1009 = 7 · 144 + 1 so 7 doesn't divide
1009. When p = 11, we have 1009 = 11 · 91 + 8 so 11 doesn't divide 1009. When
p = 13, we have 1009 = 13 · 77+8 so 13 doesn't divide 1009. When p = 17, we have
1009 = 17 ·59+6 so 17 doesn't divide 1009. When p = 19, we have 1009 = 19 ·53+2
so 19 doesn't divide 1009. When p = 23, we have 1009 = 23 · 43 + 20 so 23 doesn't
divide 1009. Finally, when p = 29, we have 1009 = 29 · 34 + 23 so 29 doesn't divide
1009. Therefore, 1009 is a prime number.

2. Employing the Sieve of Eratosthenes, obtain all the primes between 100 and 200.

Solution Let's put all the numbers between 1 and 200 in a table and put in red
the numbers that are removed as described by the algorithm:

2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100
101 102 103 104 105 106 107 108 109 110
111 112 113 114 115 116 117 118 119 120
121 122 123 124 125 126 127 128 129 130
131 132 133 134 135 136 137 138 139 140
141 142 143 144 145 146 147 148 149 150
151 152 153 154 155 156 157 158 159 160
161 162 163 164 165 166 167 168 169 170
171 172 173 174 175 176 177 178 179 180
181 182 183 184 185 186 187 188 189 190
191 192 193 194 195 196 197 198 199 200
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Therefore, the prime numbers that are between 100 and 200 are:

101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151,

157, 163, 167, 173, 179, 181, 191, 193, 197, 199.

3. Given that p | n for all primes p ≤ 3
√
n, show that n is either a prime or the

product of two primes. [Hint: Assume to the contrary that n contains at least three
prime factors.]

Solution Suppose that there are three prime numbers p1, p2 and p3 such that
p1p2p3 | n. From the assumption in the statement of this exercice, we must have
p1, p2, p3 > 3

√
n. Multiplying these three inequalities together gives us p1p2p3 > n

which is impossible since p1p2p3 divides n. Therefore, n must be factored into at
most two primes.

4. Establish the following facts:

(a)
√
p is irrational for any prime p.

(b) If a > 0 and n
√
a is rational, then n

√
a must be an integer.

(c) For n ≥ 2, n
√
n is irrational. [Hint: Use the fact that 2n > n.]

Solution

(a) By contradiction, suppose that there exist integers a and b such that
√
p = a/b.

By the Well Ordering Principle, we can assume that a and b are relatively
prime. As a consequence, we get that in the canonical factorizations

a = p
ki1
i1

. . . p
kis
is

and b = p
kj1
j1

. . . p
kjt
jt
,

none of the pir 's are equal to the pjr 's. Using these canonical factorizations,
we can rewrite our previous equation as follows:

p · p2kj1j1
. . . p

2kjt
jt

= p
2ki1
i1

. . . p
2kis
is

.

From this, we get that p = pir for some 1 ≤ r ≤ s. By the uniqueness of
the canonical factorization, since there is an even number of p's on the right
hand side of the equation, then there must be an even number of p's on the
left hand side of the equation. However, none of the pjn 's are equal to pir and
hence, there is only one p on the left hand side of the equation. Therefore, by
contradiction,

√
p must be irrational.

(b) Since n
√
a is rational, then there exist positive integers c and d such that n

√
a =

c/d. By the Well Ordering Principle, we can assume that c and d are relatively
prime, and so they have no common divisor. Suppose by contradiction that
d ̸= 1, then there exists a prime number p such that p | d. If we rewrite the
equation n

√
a = c/d as a · dn = an, then p | d implies that p | a · dn = cn.

By properties of prime numbers, it follows that p | c. But this is impossible
because we get that p ̸= 1 is a common divisor of c and d. Therefore, by
contradiction, we must have that d = 1 which means that n

√
a is an integer.
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(c) By contradiction, suppose that n
√
n is rational, then by part (b), there is an

integer k such that kn = n. We have that k ̸= 1 because otherwise, n = 1 which
is false. Hence, k ≥ 2 which implies that n < 2n ≤ kn = n, a contradiction.
Therefore, n

√
n is irrational.

5. Show that any composite three-digit number must have a prime factor less than
or equal to 31.

Solution Let n be a three-digit composite number, then it must satisfy n ≤ 1000
and so

√
n ≤

√
1000. Moreover, n must have a prime factor p ≤

√
n ≤

√
1000.

Since 1000 is between 312 = 961 and 322 = 1024, and p is an integer, then p must
be less than or equal to 31.

6. Fill in any missing details in this sketch of a proof of the in�nitude of primes:
Assume that there are only �nitely many primes, say p1, p2, ..., pn. Let A be the
product of any r of these primes and put B = p1p2 . . . pn/A. Then each pk divides
either A or B, but not both. Since A+ B > 1, A+ B has a prime divisor di�erent
from any of the pk, a contradiction.

Solution First, let's prove that each pk divides either A or B but not both. First,
since the list p1, ..., pn is a list of distinct primes, then pi ̸= pj whenever i ̸= j. By
construction of A, there are two possibilities, either pk is in the product of r primes
that constitutes A and so pk | A, either it is not. In that case, pk doesn't divide
A since otherwise, it would be equal to one of the primes constituing A which is
impossible. Hence, since pk | p1 . . . pn = AB, then pk | B since it doesn't divide A.
Therefore, as we saw from these two cases, pk must divide either A or B.Suppose
now that it divides both A and B, then we must have a contradiction because by
construction, A is composed of primes distinct than B.

Let's show that each pk cannot divide A+B. By contradiction suppose that pk |
A+B and assume without loss of generality that pk | A, then pk | (A+B)−A = B
which is impossible since pk cannot divide both.

7. Modify Euclid's proof that there are in�nitely many primes by assuming the
existence of a largest prime p and using the integer N = p! + 1 to arrive at a
contradiction.

Solution Suppose that there is a largest prime number p and de�ne the integer
N = p! + 1. Since N > 1, then there must be a prime number q that divides N .
But since q ≤ p, then q | p! and so q | N − p! = 1 which is impossible. Therefore, by
contradiction, there is no largest prime number.

8. Give another proof of the in�nitude of primes by assuming that there are only
�nitely many primes, say p1, p2, ..., pn, and using the integer

N = p2p3 . . . pn + p1p3 . . . pn + · · ·+ p1p2 . . . pn−1

to arrive at a contradiction.
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Solution Suppose that there are �nitely many primes p1, p2, ..., pn and de�ne the
integer

N = p2p3 . . . pn + p1p3 . . . pn + · · ·+ p1p2 . . . pn−1,

then from the fact that N > 1, there must be a pk such that pk | N . by construction
of N , pk divides every term of the form p1 . . . pi−1pi+1 . . . pn except when i = k.
Hence,

pk | N −
∑
i ̸=k

p1 . . . pi−1pi+1 . . . pn = p1 . . . pk−1pk+1 . . . pn.

It follows that pk = pt for some t ̸= k which is impossible since the pj's are distinct.
Therefore, by contradiction, there are in�nitely many primes.

9.

(a) Prove that if n > 2, then there exists a prime p satisfying n < p < n!. [Hint:

If n!− 1 is not a prime, then it has a prime divisor p; and p ̸= n implies p | n!,
leading to a contradiction.]

(b) For n > 1, show that every prime divisor of n! + 1 is an odd integer greater
than n.

Solution

(a) Let n > 2 and consider the number n!− 1. If it is a prime, then we are done.
If it is isn't, then n!− 1 > 1 implies that there exist a prime p that divides it.
If p ≤ n, then p | n! and so p | n! − (n! − 1) = 1, a contradiction. Therefore,
in all cases, there is a prime p satisfying n < p < n!.

(b) Let p be a prime number dividing n! + 1 where n > 1. If p = 2, then p ≤ n
and so p | n!. It follows that p | (n! + 1)− n! = 1, a contradiction. Therefore,
p must be odd. More generally, if p ≤ n, then p | (n! + 1) − n! = 1 which is
again a contradiction. Therefore, p must be odd and greater than n.

10. Let qn be the smallest prime which is strictly greater than Pn = p1p2 . . . pn+1.
It has been conjectured that the di�erence (p1p2 . . . pn) − qn is always a prime.
Con�rm this for the �rst �ve values of n.

Solution When n = 1, we have P1 = p1+1 = 3 and q1 = 5. Hence, q1−p1 = 3 which
is a prime number. When n = 2, we have P2 = p1p2 + 1 = 7 and q2 = 11. Hence,
q2 − p1p2 = 5 which is a prime number. When n = 3, we have P3 = p1p2p3 + 1 = 31
and q3 = 37. Hence, q3 − p1p2p3 = 7 which is a prime number. When n = 4, we
have P4 = p1p2p3p4 + 1 = 211 and q4 = 223. Hence, q4 − p1p2p3p4 = 23 which is
a prime number. Finally, when n = 5, we have P5 = p1p2p3p4p5 + 1 = 2311 and
q5 = 2333. Hence, q5 − p1p2p3p4p5 = 23 which is a prime number. Therefore, the
conjecture holds for n = 1, 2, 3, 4, 5.

11. If pn denotes the nth prime number, put dn = pn+1 − pn. An open question is
whether the equation dn = dn+1 has in�nitely many solutions; give �ve solutions.

Solution When n = 2, we have d2 = p3−p2 = 5−3 = 2, and d3 = p4−p3 = 7−5 = 2.
Hence, we get d2 = d3. When n = 15, we have d15 = p16 − p15 = 53 − 47 = 6, and
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d16 = p17 − p16 = 59 − 53 = 6. Hence, we get d15 = d16. When n = 36, we have
d36 = p37 − p36 = 157 − 151 = 6, and d37 = p38 − p37 = 163 − 157 = 6. Hence,
we get d36 = d37. When n = 39, we have d39 = p40 − p39 = 173 − 167 = 6, and
d41 = p42 − p41 = 179 − 173 = 6. Hence, we get d39 = d40. When n = 46, we have
d46 = p47 − p46 = 211 − 199 = 12, and d47 = p48 − p47 = 223 − 211 = 12. Hence,
we get d46 = d47. Therefore, n = 2, 15, 36, 39, 46 are all solutions of the equation
dn = dn+1.

12. Assuming that pn is the nth prime number, establish each of the following
statements:

(a) pn > 2n− 1 for n ≥ 5.

(b) None of the integers Pn = p1p2 . . . pn + 1 is a perfect square. [Hint: Each Pn

is of the form 4k + 3.]

(c) The sum
1

p1
+

1

p2
+ · · ·+ 1

pn
is never an integer.

Solution

(a) Let n ≥ 5 be an integer and notice that there are n− 1 odd integers less than
2n − 1. Since prime numbers are all odd except two, then we get that there
are at most n prime numbers less than 2n − 1. However, if we add the fact
that 2n − 1 ≥ 9 and that 9 is not a prime number, we can lower the upper
bound and get that there are at most n− 1 prime numbers less than or equal
to 2n− 1. It follows that pn > 2n− 1 since otherwise, we would get that there
are at least n primes less than 2n− 1.

(b) If we consider the two cases m = 2k and m = 2k+1, we get that m2 = 4k0 or
m2 = 4k1 + 1. Hence, in general, squares are either of the form 4k or 4k + 1.
If we let n be an integer, then the integer Pn = p1p2 . . . pn + 1 has the form
4k+3 because p1 = 2, all the pi's are odd for i > 1 and so p2p3 . . . pn = 2k+1.
It follows that Pn = 2(2k+1)+1 = 4k+3. Therefore, Pn cannot be a square.

(c) By contradiction, suppose that the sum of fractions is an integer, then equiva-
lently, if we add the fractions together, we get that

p2p3 . . . pn + p1p3 . . . pn + · · ·+ p1p2 . . . pn−1

p1p2 . . . pn

is an integer, and hence that p1p2 . . . pn | N whereN = p2p3 . . . pn+p1p3 . . . pn+
· · · + p1p2 . . . pn−1. It follows that p1 | N . But notice that p1 divides all the
terms in the de�nition of N except the �rst one, it follows that

p1 | N −
n∑

i=2

p1 . . . pi−1pi+1 . . . pn = p2p3 . . . pn.

Since p1 is a prime number, then p1 | pi for some i ̸= 1. Since pi is a prime,
then p1 = pi. But this is a contradiction since the pj's are distinct. Therefore,
the original sum of fractions cannot be an integer.
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13.

(a) For the repunits Rn, prove that if k | n, then Rk | Rn. [Hint: If n = kr,
consider the identity

xn − 1 = (xk − 1)(x(r−1)k + x(r−2)k + · · ·+ xk + 1).]

(b) Use part (a) to obtain the prime factors of the repunit R10.

Solution

(a) In the identity

xn − 1 = (xk − 1)(x(r−1)k + x(r−2)k + · · ·+ xk + 1),

replace x by 10 and divide both sides by 9 to obtain

Rn = Rk(1 + 10k + 102k + · · ·+ 10(r−1)k).

It directly follows that Rk | Rn.

(b) From part (a), we have that R10 is divisible by both R2 = 11 and R5 = 41 ·271.
It follows that R10 = 11 · 41 · 271 · 9091. Since 9091 is a prime number, then
we are done.
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3.3 The Goldbach Conjecture

1. Verify that the integers 1949 and 1951 are twin primes.

Solution Let's show that both integers are prime numbers by proving that none
of the prime less than their square roots are divisors. Since 442 < 1949, 1951 < 452,
then it su�ces to consider the primes that are less than 44: 2, 3, 5, 7, 11, 13, 17,
19, 23, 29, 31, 37, 41, 43. Obviously, both integers are not divisible by 2, 3 and 5.

1949 = 7 · 278 + 1 1951 = 7 · 278 + 3

1949 = 11 · 177 + 2 1951 = 11 · 177 + 4

1949 = 13 · 149 + 12 1951 = 13 · 150 + 1

1949 = 17 · 114 + 11 1951 = 17 · 114 + 13

1949 = 19 · 102 + 11 1951 = 19 · 102 + 13

1949 = 23 · 88 + 17 1951 = 23 · 88 + 19

1949 = 29 · 67 + 3 1951 = 29 · 67 + 5

1949 = 31 · 62 + 27 1951 = 31 · 62 + 29

1949 = 37 · 52 + 25 1951 = 37 · 52 + 27

1949 = 41 · 47 + 22 1951 = 41 · 47 + 24

1949 = 43 · 45 + 14 1951 = 43 · 45 + 16.

As it can be seen from the previous equations, none of these primes divide the two
integers. Therefore, they form a pair of twin primes.

2.

(a) If 1 is added to a product of twin primesn prove that a perfect square is always
obtained.

(b) Show that the sum of twin primes p and p+2 is divisible by 12, provided that
p > 3.

Solution

(a) Let p and q be twin primes, then there exists an integer n such that p = n− 1
and q = n+ 1. It follows that pq+ 1 = (n− 1)(n+ 1) + 1 = (n2 − 1) + 1 = n2

which is a perfect square.

(b) First, since p > 3, then p mustbe odd since the only even prime is 2. Moreover,
p cannot be of the form 3k since p ̸= 3. Thus, either p is of the form 3k + 1
or of the form 3k + 2. However, p + 2 is also a prime by our assumption
and so if p = 3k + 1, then p + 2 = 3(k + 1) which is divisible than 3 and
distinct than 3, a contradiction. It follows that p = 3k + 2. Therefore, p + 1
is divisible by both 2 and 3 and since gcd(2, 3) = 1, then 6 | p + 1. It follows
that p+ (p+ 2) = 2(p+ 1) is divisible by 12.

3. Find all pairs of primes p and q satisfying p− q = 3.
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Solution Notice that if q is even, then p = q + 3 is odd, and if q is odd, then
p = q + 3 is even. It follows that p and q don't have the same parity. But the only
even prime is 2 so the only possible pair is p = 5 and q = 2.

4. Sylvester (1896) rephrased Goldbach's Conjecture so as to read: Every even
integer 2n greater than 4 is the sum of twin primes, one larger than n/2 and the other
less than 3n/2. Verify this version of the conjecture for all even integers between 6
and 76.

Solution

n 2n n/2 3n/2 twin pair p ≥ n/2 twin pair q ≤ 3n/2 p+ q
3 6 1.5 4.5 3 3 6
4 8 2 6 3 5 8
5 10 2.5 7.5 5 5 10
6 12 3 9 5 7 12
7 14 3.5 10.5 7 7 14
8 16 4 12 5 11 16
9 18 4.5 13.5 5 13 18
10 20 5 15 7 13 20
11 22 5.5 16.5 11 11 22
12 24 6 18 11 13 24
13 26 6.5 19.5 13 13 26
14 28 7 21 11 17 28
15 30 7.5 22.5 11 19 30
16 32 8 24 13 19 32
17 34 8.5 25.5 31 3 34
18 36 9 27 31 5 36
19 38 9.5 28.5 31 7 38
20 40 10 30 29 11 40
21 42 10.5 31.5 31 11 42
22 44 11 33 31 13 44
23 46 11.5 34.5 41 5 46
24 48 12 36 41 7 48
25 50 12.5 37.5 43 7 50
26 52 13 39 41 11 52
27 54 13.5 40.5 41 13 54
28 56 14 42 43 13 56
29 58 14.5 43.5 41 17 58
30 60 15 45 43 17 60
31 62 15.5 46.5 43 19 62
32 64 16 48 59 5 64
33 66 16.5 49.5 59 7 66
34 68 17 51 61 7 68
35 70 17.5 52.5 41 29 70
36 72 18 54 41 31 72
37 74 18.5 55.5 43 31 74
38 76 19 57 71 5 76
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5. In 1752, Goldbach submitted the following conjecture to Euler: Every odd
integer can be written in the form p+2a2, where p is either a prime or 1s and a ≥ 0.
Show that the integer 5777 refutes this conjecture.

Solution To show that 5777 refutes the conjecture, let's show that 5777 − 2a2 is
never a prime number. First, notice that if the conjecture is true, then a should
be contained in the interval a = 0, a = 53 since 2 · 532 = 5618 and 2 · 542 = 5832.
Hence, we need to show that 5777− 2a2 is not a prime for all 0 ≤ a ≤ 53:

a 2a2 5777− 2a2 Prime ? a 2a2 5777− 2a2 Prime ?
0 0 5777 No 27 1458 4319 No
1 2 5775 No 28 1568 4209 No
2 8 5769 No 29 1682 4095 No
3 18 5759 No 30 1800 3977 No
4 32 5745 No 31 1922 3855 No
5 50 5727 No 32 2048 3729 No
6 72 5705 No 33 2178 3599 No
7 98 5679 No 34 2312 3465 No
8 128 5649 No 35 2450 3327 No
9 162 5615 No 36 2592 3185 No
10 200 5577 No 37 2738 3039 No
11 242 5535 No 38 2888 2889 No
12 288 5489 No 39 3042 2735 No
13 338 5439 No 40 3200 2577 No
14 392 5385 No 41 3362 2415 No
15 450 5327 No 42 3528 2249 No
16 512 5265 No 43 3698 2079 No
17 578 5199 No 44 3872 1905 No
18 648 5129 No 45 4050 1727 No
19 722 5055 No 46 4232 1545 No
20 800 4977 No 47 4418 1359 No
21 882 4895 No 48 4608 1169 No
22 968 4809 No 49 4802 975 No
23 1058 4719 No 50 5000 777 No
24 1152 4625 No 51 5202 575 No
25 1250 4527 No 52 5408 369 No
26 1352 4425 No 53 5618 159 No

Therefore, 5777 refutes the conjecture.

6. Prove that Goldbach's Conjecture that every even integer greater than 2 is the
sum of two primes is equivalent to the statement that every integer greater than 5
is the sum of three primes. [Hint: If 2n − 2 = p1 + p2, then 2n = p1 + p2 + 2 and
2n+ 1 = p1 + p2 + 3.]

Solution Suppose that Goldbach's Conjecture is true and let n ≥ 3, then there
exist two prime numbers p1 and p2 such that 2n − 2 = p1 + p2. It follows that
2n = p1+ p2+2 and 2n+1 = p1+ p2+3. Therefore, it holds for all integers greater
than 5. Conversely, suppose that every integer greater than 5 is the sum of three
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primes and let n ≥ 3 be an integer, then 2n = p1 + p2 + p3 for some prime numbers
p1, p2 and p3. Since 2n is even, then p1, p2, p3 cannot all be odd and so one of them
must be even. Without loss of generality, we can assume that p3 is even and hence,
p3 = 2. Thus, 2n− 2 = p1 + p2. This proves Goldbach's Conjecture.

7. A conjecture of Lagrange (1775) asserts that every odd integer greater than 5
can be written as a sum p1 + 2p2, where p1, p2 are both primes. Con�rm this for all
odd integers through 75.

Solution

7 = 3 + 2 · 2 25 = 19 + 2 · 3 43 = 37 + 2 · 3 61 = 47 + 2 · 7
9 = 5 + 2 · 2 27 = 23 + 2 · 2 45 = 41 + 2 · 2 63 = 59 + 2 · 2
11 = 7 + 2 · 2 29 = 23 + 2 · 3 47 = 41 + 2 · 3 65 = 59 + 2 · 3
13 = 7 + 2 · 3 31 = 17 + 2 · 7 49 = 43 + 2 · 2 67 = 61 + 2 · 3
15 = 11 + 2 · 2 33 = 29 + 2 · 2 51 = 47 + 2 · 2 69 = 59 + 2 · 5
17 = 13 + 2 · 2 35 = 31 + 2 · 2 53 = 47 + 2 · 3 71 = 67 + 2 · 2
19 = 13 + 2 · 3 37 = 31 + 2 · 3 55 = 41 + 2 · 7 73 = 67 + 2 · 3
21 = 17 + 2 · 2 39 = 29 + 2 · 5 57 = 53 + 2 · 2 75 = 71 + 2 · 2
23 = 19 + 2 · 2 41 = 37 + 2 · 2 59 = 53 + 2 · 3

Therefore, the conjecture is true for all odd numbers smaller than 75.

8. Given a positive integer n, it can be shown that there exists an even integer a
which is representable as the sum of two odd primes in n di�erent ways. Con�rm
that the integers 60, 78, and 84 can be written as the sum of two primes in six,
seven and eight ways, respectively.

Solution Simply notice that

60 = 7 + 53 = 13 + 47 = 17 + 43 = 19 + 41 = 23 + 37 = 29 + 31

78 = 5 + 73 = 7 + 71 = 11 + 67 = 17 + 61 = 19 + 59 = 31 + 47 = 37 + 41

84 = 5 + 79 = 11 + 73 = 13 + 71 = 17 + 67 = 23 + 61 = 31 + 53 = 37 + 47 = 41 + 43

9.

(a) For n > 3, show that the integers n, n+ 2, n+ 4 cannot all be prime.

(b) Three integers p, p+ 2, p+ 6 which are prime are called a prime-triplet. Find
�ve sets of prime-triplets.

Solution

(a) Suppose that there is a prime number n > 3 such that n + 2 and n + 4 are
also prime. Since n is prime and n > 3, then either n = 3k + 1 or n = 3k + 2.
In the �rst case, we have n + 2 = 3(k + 1) which is a contradiction. Hence,
n = 3k + 2 but in that case, n + 4 = 3(k + 2) which is again a contradiction.
It follows that no such integer n exists.

(b) By looking at the tables, we can �nd the following prime-triplets: (5, 7, 11),
(11, 13, 17), (17, 19, 23), (41, 43, 47) and (101, 103, 107).
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10. Establish that the sequence

(n+ 1)!− 2, (n+ 1)!− 2, . . . , (n+ 1)!− (n+ 1)

produces n consecutive composite integers for n > 1.

Solution By construction, the sequence is composed of n consecutive integers.
Take now the term (n + 1)! − k in the sequence where k is an integer satisfying
2 ≤ k ≤ n+ 1. Since k ≤ n+ 1, then k | (n+ 1)! and hence, k | (n+ 1)!− k. Since
k ≥ 2, then k is a non-trivial factor of (n+1)!− k showing that all the terms of the
sequence are composite integers.

11. Find the smallest positive integer n for which the function f(n) = n2 + n+ 17
is composite. Do the same for the functions g(n) = n2 + 21n + 1 and h(n) =
3n2 + 3n+ 23.

Solution For the function f , the smallest n is n = 16 because f(16) = 16 ·17+17 =
172 which is composite, and because f(1) = 19, f(2) = 23, f(3) = 29, f(4) = 37,
f(5) = 47, f(6) = 59, f(7) = 73, f(8) = 89, f(9) = 107, f(10) = 127, f(11) = 149,
f(12) = 173, f(13) = 199, f(14) = 227 and f(15) = 257 are all prime numbers.

For the function g, the smallest n is n = 18 because f(18) = 703 = 19 · 37 which
is composite, and because g(1) = 23, g(2) = 47, g(3) = 73, g(4) = 101, g(5) = 131,
g(6) = 163, g(7) = 197, g(8) = 233, g(9) = 271, g(10) = 311, g(11) = 353,
g(12) = 397, g(13) = 443, g(14) = 491, g(15) = 541, g(16) = 593 and g(17) = 647
are all prime numbers.

For the function h, the smallest n is n = 2 because h(22) = 1541 = 23 · 67 which
is composite, and because h(1) = 29, h(2) = 41, h(3) = 59, h(4) = 83, h(5) = 113,
h(6) = 149, h(7) = 191, h(8) = 239, h(9) = 293, h(10) = 353, h(11) = 419,
h(12) = 491, h(13) = 569, h(14) = 653, h(15) = 743, h(16) = 839, h(17) = 941,
h(18) = 1049, h(19) = 1163, h(20) = 1283 and h(21) = 1409 are all prime numbers.

12. The following result was conjectured by Bertrand, but �rst proved by Tchebychef
in 1850: For every positive integer n > 1, there exists at least one prime p satisfying
n < p < 2n. Use Bertrand's Conjecture to show that pn < 2n, where pn is the nth
prime number.

Solution First, de�ne the sequence Pn as P1 = 2, P2 = 3 and Pn as the prime
number satisfying 2n−1 < Pn < 2n where n ≥ 3. By construction, we have that Pn

is a strictly increasing sequence of prime numbers. Hence, since there are at least
n− 1 prime numbers less than Pn, we must have the inequality pn ≤ Pn. Therefore,
by construction, we have pn ≤ Pn < 2n and so pn < 2n.

13. Apply the same method of proof as in Theorem 3-6 to show that there are
in�nitely many primes of the form 6n+ 5.

Solution Suppose that there are �nitely many primes of the form 6n + 5, and
denote them by q1, q2, ..., qn. Consider the integer

N = 6(q1q2 . . . qn)− 1 = 6(q1q2 . . . qn − 1) + 5
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Since N is neither even, nor a multiple of 3, then its prime factors are of the form
6n+1 or 6n+5. If all prime factors of N are of the form 6n+1, then the equation

(6k + 1)(6k′ + 1) = 6(6kk′ + k + k′) + 1

tells us that N must have the form 6n + 1, which is false. Therefore, there must
be a prime p of the form 6n + 5. By our assumption, p = qi for some i and so
p | 6(q1q2 . . . qn). It follows that p | 6(q1q2 . . . qn) − N = 1 which is a contradiction
since p ̸= 1. Therefore, there are in�nitely many primes of the form 6n+ 5.

14. Find a prime divisor of the integer N = 4(3 · 7 · 11)− 1 of the form 4n+3. Do
the same for N = 4(3 · 7 · 11 · 15)− 1.

Solution We have that 4(3 · 7 · 11)− 1 = 923 is divisble by the prime 71 which is
of the form 4n + 3. Since 4(3 · 7 · 11 · 15) − 1 is a prime number (it took me a lot
of time to arrive at this conclusion), then it is itself a prime factor of the form 4n+3.

15. Another unanswered question is whether the exist an in�nite number of sets
of �ve consecutive integers of which four are primes. Find �ve such sets of integers.

Solution The following sets satisfy the property above: {3, 5, 7, 9, 11}, {11, 13, 15, 17, 19},
{101, 103, 105, 107, 109}, {191, 193, 195, 197, 199} and {461, 463, 465, 467, 469}.

16. Let the sequence of primes, with 1 adjoined, be denoted by p0 = 1, p1 = 2,
p2 = 3, p3 = 5, ... For each n ≥ 1, it is known that there exists a suitable choice of
coe�cients ϵk = ±1 such that

p2n = p2n−1 +
2n−2∑
k=0

ϵkpk, p2n+1 = 2p2n +
2n∑
k=0

ϵkpk.

To illustrate:
13 = 1 + 2− 3− 5 + 7− 11 and
17 = 1 + 2− 3− 5 + 7− 11 + 2 · 13.
Determine similar expressions for the primes 23, 29, 31, and 37.

Solution We have

23 = −1 + 2− 3− 5 + 7− 11 + 13− 17 + 2 · 19,
29 = 1 + 2− 3− 5 + 7− 11 + 13− 17 + 19 + 23,

31 = 1− 2 + 3 + 5− 7 + 11− 13 + 17− 19− 23 + 2 · 29,
37 = 1− 2 + 3 + 5− 7 + 11− 13− 17 + 19− 23 + 29 + 31.

17. In 1848 de Polignac claimed that every odd integer is the sum of a prime and
a power of 2. For example, 55 = 47 + 23 = 23 + 25. Show that the integers 509 and
877 discredit this claim.

Solution To show that 509 is a counterexample, let's show that 509− 2n is not a
prime for all n ≥ 0. First, notice that if n ≥ 9, 509 − 2n < 0 and so it cannot be
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a prime number. Thus, we only need to consider the values n = 0, 1, ..., 8. When
n = 0, 509 − 2n = 508 = 2 · 254 which is composite. When n = 1, 509 − 2n =
507 = 3 · 169 which is composite. When n = 2, 509 − 2n = 505 = 5 · 101 which is
composite. When n = 3, 509− 2n = 501 = 3 · 167 which is composite. When n = 4,
509− 2n = 493 = 17 · 29 which is composite. When n = 5, 509− 2n = 477 = 3 · 159
which is composite. When n = 6, 509 − 2n = 445 = 5 · 89 which is composite.
When n = 7, 509 − 2n = 381 = 3 · 127 which is composite. Finally, when n = 8,
509 − 2n = 253 = 11 · 23 which is composite. Therefore, 509 cannot be written in
the form p+ 2n where p is prime and n is a positive integer.

Similarly, to show that 877 is a counterexample, let's show that 877− 2n is not
a prime for all n ≥ 0. First, notice that if n ≥ 10, 877 − 2n < 0 and so it cannot
be a prime number. Thus, we only need to consider the values n = 0, 1, ..., 9.
When n = 0, 877 − 2n = 876 = 2 · 438 which is composite. When n = 1,
877− 2n = 875 = 5 · 175 which is composite. When n = 2, 877− 2n = 873 = 3 · 291
which is composite. When n = 3, 877 − 2n = 869 = 11 · 79 which is composite.
When n = 4, 877 − 2n = 861 = 3 · 287 which is composite. When n = 5,
877− 2n = 845 = 5 · 169 which is composite. When n = 6, 877− 2n = 813 = 3 · 271
which is composite. When n = 7, 877 − 2n = 749 = 7 · 107 which is composite.
When n = 8, 877 − 2n = 621 = 3 · 207 which is composite. Finally, when n = 9,
877− 2n = 365 = 5 · 73 which is composite. Therefore, 877 cannot be written in the
form p+ 2n where p is prime and n is a positive integer.

18.

(a) If p is a prime and p ̸| b, prove that in the arithmetic progression

a, a+ b, a+ 2b, a+ 3b, . . .

every pth term is divisible by p. [Hint: Since gcd(p, b) = 1, there exists integers
r and s satisfying pr+ bs = 1. Put nk = kp− as for k = 1, 2, ... and show that
p | a+ nkb.]

(b) From part (a), conclude that if b is an odd integer, then every other term in
the indicated progression is even.

Solution

(a) Since p doesn't divide b, then gcd(p, b) = 1 and so there exist integers r and
s such that pr + bs = 1. Hence, if we de�ne the sequence nk = kp− as, then
a + nkb = a + (kp− as)b = a + bkp− abs = a + bkp− a(1− pr) = p(bkr). It
follows that the term a+ nkb is always divisible by p.

(b) If we put p = 2 and b be an odd integer, then part (a) tells us that at least
one of the even-indexed terms or odd-indexed terms are even.

19. In 1950, it was proven that any integer n > 9 can be written as a sum of
distinct odd primes. Express the integers 25, 69, 81, and 125 in this fashion.
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Solution We have

25 = 5 + 7 + 13

69 = 3 + 5 + 61,

81 = 3 + 5 + 73,

125 = 5 + 7 + 113.

20. If p and p2 + 8 are both prime numbers, prove that p3 + 4 is also a prime.

Solution Let p be a prime number such that p2 + 8 is also a prime number.
Consider the case in which p = 3k + 1, then p2 + 8 = 3k′ + 9 = 3(k′ + 3) which
is not a prime, hence, p is not of the form 3k + 1. Similarly, if p = 3k + 2, then
p2 + 8 = 3k′ + 12 = 3(k′ + 4) which is not a prime. Thus, p must be of the form
3k. But since p is prime, then p = 3. Therefore, p3+4 = 31 is indeed a prime number.

21.

(a) For any integer k > 0, establish that the arithmetic progression

a+ b, a+ 2b, a+ 3b, . . . ,

where gcd(a, b) = 1, contains k consecutive terms which are composite.

[Hint: Put n = (a+ b)(a+ 2b) . . . (a+ kb) and consider the k terms

a+ (n+ 1)b, a+ (n+ 2)b, . . ., a+ (n+ k)b.]

(b) Find �ve consecutive composite terms in the arithmetic progression

6, 11, 16, 21, 26, 31, 36, . . .

Solution

(a) Let n = (a + b)(a + 2b) . . . (a + kb) and notice that for all 1 ≤ i ≤ k, n is
divisible by a+ ib. It follows that

a+ (n+ i)b = (a+ ib) + nb = (a+ ib)

(
1 + b

n

a+ ib

)
.

This proves that the term a+ (n+ i)b is composite.

(b) Using part (a), we get that 14894891, 14894896, 14894901, 14894906 and
14894911 are �ve consecutive composite terms of the sequence.

22. Show that 13 is the largest prime that can divide two successive integers of
the form n2 + 3.

Solution Let p be a prime number such that p | n2+3 and p | (n+1)2+3, then we
can easily derive that p | (n+1)2 +3− n2 − 3 = 2n+1. It follows that pk = 2n+1
for some integer k, and so that n = pk−1

2
. Hence, we rewrite the fact that p | n2 + 3
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into the equation pt = (pk−1
2

)2 +3 where t is an integer. From this equation, we can
derive

pt =

(
pk − 1

2

)2

+ 3 =⇒ 4pt = (pk − 1)2 + 12

=⇒ 4pt = p2k2 − 2pk + 1 + 12

=⇒ p(4t− pk2 + 2k) = 13

=⇒ p | 13.

Therefore, p = 13 since p and 13 are prime numbers.

23.

(a) The arithmetic mean of the twin primes 5 and 7 is the triangular number 6.
Are there any other twin primes with triangular mean?

(b) The arithmetic of the twin primes 3 and 5 is the perfect square 4. Are there
any other twin primes with a square mean?

Solution

(a) Suppose that we have a pair of twin primes p and q such that p = tn − 1 and
q = tn + 1 for some n, then using the formula for tn, we get

p =
n(n+ 1)

2
− 1

=
n2 + n− 2

2

=
(n− 1)(n+ 2)

2
.

Since either n−1 or n+2 is even, then we have p = (n+2)n−1
2

or p = (n−1)n+2
2
.

But since p is a prime number, then in the �rst case, p must be equal to 5 (by
solving n−1

2
= 1) and in the second case, p must be equal to 2. In the second

case, p = 2 is impossible since it is not a twin prime. Therefore, the only pair
of twin primes with an arithmetic mean equal to a triangular number is the
pair p = 5 and q = 7.

(b) Suppose that we have a pair of twin primes p and q such that p = n2 − 1 and
q = n2 +1 for some n, then p = (n− 1)(n+1). Since p is a prime, then either
n−1 = 1 or n+1 = 1. In the �rst case, we get n = 2 which implies that p = 3.
In the second case, we get that n = 0 and so that p = 0, which is impossible.
Therefore, the only twin pair with a square mean is the pair p = 3 and q = 5.

24. Determine all twin primes p and q = p+ 2 for which pq − 2 is also prime.

Solution First, notice that p cannot be of the form 3k+1 because this would imply
that q is of the form 3k′ with k′, a contradiction since q is prime. Thus, either p is
of the form 3k (which only happens in the case p = 3), or p is of the form 3k + 2.
When p = 3, we have pq − 2 = 3 · 5 − 2 = 13 which is a prime number. When
p = 3k + 2, we have

pq − 2 = (3k + 2)(3k + 4)− 2 = 9k2 + 18k + 6 = 3(3k2 + 6k + 2)
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which is composite. Therefore, the only pair that satis�es the condition is the pair
p = 3 and q = 5.

25. Let pn denote the nth prime. For n > 3, show that

pn < p1 + p2 + · · ·+ pn−1.

[Hint: Use induction and Bertrand's Conjecture.]

Solution Let's prove it by induction on n. When n = 4, we have

p1 + p2 + p3 = 2 + 3 + 5 = 10 > 7 = p4.

Hence, the statement holds for n = 4. Suppose now that there is an integer k > 3
such that

pk < p1 + p2 + · · ·+ pk−1,

then equivalently, we have

0 < p1 + p2 + · · ·+ pk−1 − pk.

Moreover, by Bertrand's Conjecture, we have that there is a prime p such that
pk+1−1

2
< p < pk+1 − 1. Since p < pk+1, then we must have p ≤ pk, then we get that

pk+1−1

2
< pk and so that pk+1 − 1 < 2pk. Since both pk+1 − 1 and 2pk are even, then

we get that pk+1 < 2pk. Finally, using the inequality above, we obtain

pk+1 < 2pk < p1 + p2 + · · ·+ pk−1 − pk + 2pk < p1 + p2 + · · ·+ pk.

Therefore, by induction, the statement holds for all n > 3.

26. Verify the following:

(a) There exist in�nitely many primes ending in 33, such as 233, 433, 733, 1033,
.... [Hint: Apply Dirichlet's Theorem.]

(b) There exist in�nitely many primes which do not belong to any pair of twin
primes. [Hint: Consider the arithmetic progression 21k + 5 for k = 1, 2,...]

(c) There exists a prime ending in as many consecutive 1's as desired. [Hint: To
obtain a prime ending in n consecutive 1's, consider the arithmetic progression
10nk +Rn for k = 1, 2, ....]

Solution

(a) Since 100 · 1 + 33 · (−3) = 1, then gcd(100, 33) = 1, and so by Dirichlet's
Theorem there exist in�nitely many primes of the form 100n + 33. These
primes are precisely the ones ending with 33.

(b) Since 21 · 1 + 5 · (−4) = 1, then gcd(21, 5) = 1, and so by Dirichlet's Theorem
there exist in�nitely many primes of the form 21n+ 5. Now, let p be a prime
of the form 21n + 5, then p + 2 = 21n + 7 = 7(3n + 1) which is composite,
and similarly, p − 2 = 21n + 3 = 3(7n + 1) which is also composite. Thus, p
cannot be a twin primes. Therefore, there are in�nitely many primes which
do not belong to a pair of twin primes.
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(c) Let n be a positive integer, since 10n ·1+Rn ·(−9) = 1, then gcd(10n, Rn) = 1,
and so by Dirichlet's Theorem there exist in�nitely many primes of the form
10nk + Rn. In other words, there are in�nitely many primes that end with n
1's. Since this holds for all n, then it follows that there exists a prime ending
in as many consecutive 1's as desired.

27. Prove that for every n ≥ 2 there exists a prime p with p < n < 2p. [Hint:

If n = 2k + 1, then by Bertrand's Conjecture there exists a prime p such that
k < p < 2k.]

Solution Let n ≥ 2 be an integer. If n is even, then n = 2k for some non-zero
integer k. By Bertrand's Conjecture, we get that k < p < 2k for some prime number
p. From the inequality k < p, we get n < 2p by multiplying both sides by 2, and
from p < 2k, we get p < n by de�nition of k. Thus, we get that p < n < 2p.
Similarly, if n is odd, then n = 2k + 1 for some non-zero integer k. By Bertrand's
Conjecture, we get that k < p < 2k for some prime number p. From the inequality
k < p, we get n < 2p by multiplying both sides by 2, and from p < 2k < 2k + 1, we
get p < n by de�nition of k. Thus, we get that p < n < 2p. Therefore, it holds for
all integers n ≥ 2.

28.

(a) If n > 1, show that n! is never a perfect square.

(b) Find the values of n ≥ 1 for which

n! + (n+ 1)! + (n+ 2)!

is a perfect square. [Hint: Note that n! + (n+ 1)! + (n+ 2)! = n!(n+ 2)2.]

Solution

(a) Let n > 1 be an integer and consider the integer n! > 1. Let p be the largest
prime smaller than n, then 2p must be greater than n since otherwise, by
Bertrand's Conjecture, there would be a prime q satisfying p < q < 2p ≤ n
contradicting the fact that p is the greatest. It follows that p is the only integer
divisible by p that is less than n. It follows that n! = p1 · pr11 · · · · · prkk where
pi ̸= p for all i. This shows that n! is not a square because an integer is a
square if and only if every exponent in its canonical form is even (which is not
the case for the exponent of p).

(b) When n = 1, we have that

n! + (n+ 1)! + (n+ 2)! = 1 + 2 + 6 = 32.

Suppose now that n > 1, then

n! + (n+ 1)! + (n+ 2)! = n!(n+ 2)2.

Since n! is not a square (part a), then it must contain a prime p with an
odd exponent in its canonical form. It follows that the exponent of p in the
canonical form of n!(n + 2)2 is also odd. Therefore, n! + (n + 1)! + (n + 2)!
cannot be a square in that case, and hence, it is only a square when n = 1.
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