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Preface

The goal of this document is to share my personal solutions to the exercises in the
Fourth Edition of Linear Algebra Done Right by Sheldon Axler during my reading.
As a disclaimer, the solutions are not unique and there will probably be better
or more optimized solutions than mine. Feel free to correct me or ask me anything
about the content of this document at the following address : samy.lahloukamal@mcgill.ca
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Chapter 1

Vector Spaces

1A R" and C”

Exercise 1
Show that o + 3 = 8+ «a for all a, 8 € C.

Solution
First, suppose that
a=a-+ib and [=c+id

where a, b, c,d € R, then

a +ib)

a+fp= +
=(a+c)+i

~~ T/~

which proves that addition is commutative in C using the fact that it is commuta-
tive in R.

Exercise 2
Show that (o + 8) + A =a+ (B+ A) for all o, 8, A € C.

Solution
First, suppose that

a=a+1ib, f=c+id and IN=e-+if
where a,b,c,d, e, f € R, then

(a+B)+A=[(a+1ib)+ (c+id)] + (e + if)
=lla+c)+i(b+d)]+ (e+if)
=(la+cd+e)+i([b+d + f)
=(a+[c+e])+i(b+[d+ f])
=(a+1b) + [(c+e)+i(d+ [)]
= (a+ib) + [(c+id) + (e + if)]
=a+(B+N)



CHAPTER 1. VECTOR SPACES 4

which proves that addition is associative in C using the fact that it is associative in
R.

Exercise 3
Show that (af)A = a(BA) for all «, 5, € C.

Solution
First, suppose that

a=a+1ib, f=c+id and AN=e-+if
where a,b,c,d, e, f € R, then
(@B)A

[(a+ib)(c+id)|(e +if)

[(ac — bd) + i(ad + be)|(e + if)

(lac — bdle — [ad + bc] f) +i(Jac — bd] f + [ad + bcle)
= (ace — bde — adf — bef) +i(acf — bdf + ade + bee)
= (
= (
= (

alce — fd] — blcf + de)) + i(alcf + de] + blce — fd])
a+ ib)[(ce — fd) +i(cf + de)]
a+ib)[(c+id)(e+if)]

= a(BA)

which proves that multiplication is associative in C using the fact that multiplica-
tion is associative and addition is commutative in R.

Exercise 4
Show that AM(a+ ) = Aa+ A3 for all \,«, 8 € C.

Solution
First, suppose that

a=a+1ib, Bf=c+id and N=e-+if
where a,b,c,d, e, f € R, then

Ma+p) = (e+if)[(a+ib) + (c+ id)]

= (e+if)l(a+c)+i(b+d)]

= [e(a+c) = fo+ d)] +ile[b+d] + fla+c]]

= (ea+ec— fb— fd)+i(eb+ed+ fa+ fc)

= [(ea — fb) +i(eb+ fa)] + [(ec — fd) +i(ed + fc)]
= [(e+if)(a+ib)] +[(e+if)(c+id)]
— da+ A3

which proves the distributivity in C using the distributivity in R.

Exercise 5
Show that for every o € C, there exists a unique 5 € C such that a + 5 = 0.
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Solution
Let a = a + ib and consider = (—a) + i(—b), then we get

a+ [ = (a+ib)+ ([—a] +i[-b])
= (a+ [—a]) +i(b+ [-D])
=0+4+0
=0
which proves the existence of such a complex number 3. To prove the uniqueness of
such a complex number, let 5, and 55 be two complex numbers satisfying a+ 5, = 0

and a + By = 0, this implies that o + 51 = a + f2. If we add (3, on both sides, we
get

Bi+(a+p) =0+ (a+pF) = (Bit+a)+ b= (L+a)+ b
= (a+ 1)+ B = (a+ B1) + B2
= 0+ 06, =0+ 0,
= b=

which proves that such a complex number is unique.

Exercise 6
Show that for every o € C with a # 0, there exists a unique 8 € C such that af = 1.

Solution
Let o = a +ib # 0, then notice that we must have a? + 0* # 0. Hence, consider

6 = L +1 _L
C\a? + 12 a? 4 b?
Thus, we get

() k)
() (b)) ) (o)

B a’>+ b —ab+ba
2+02 A+ b

=140

=1

which proves the existence of such a complex number 3. To prove the uniqueness of
such a complex number, let 5, and (2 be two complex numbers satisfying af; = 1
and afy = 1, this implies that af; = afs. If we multiply by £; on both sides, we
get

Bi(aB) = Bi(afy) = (Bra)Br = (Bia)Bo
= (af)p1 = (afr)B2
= 1-51=1-p5
= b=
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which proves that such a complex number is unique.

Exercise 7
Show that
—1+V/3i
2
is a cube root of 1 (meaning that its cube equals 1).

Solution
This is pretty straightforward:

<—1 + \/32')3 (14 V30)?
2

23

(=1)° +3(=1*(V3i) + 3(-1)"(v/30)* + (V3i)*

8
—1+43/3i +3-3 —3(+/30)

8
8
-8
=1
Exercise 8
Find two distinct square roots of i.
Solution
: _ V2 V2 _ V2 2
Cons1deroz—72+172 andﬁ-—%—zf. Hence,
2
) (ﬁ ﬂ)
a =\ —+1—
2 2
2 2
V2 V2 V2 (V2
=] +2- — i—+ | 1—
2 2 2 2
2+, 2
= — 1 — —
4 4
=1
and
2
) V2 V2
gr= X2 ;M2
2 2
2 2
V2 V2 V2 V2
=|l-—— +2-|——= )|t |+ |—t—=
2 2 2 2
2+ 2
= — 1 — —
4 4
=1
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Therefore, a and (8 are two distinct square roots of 7.

Exercise 9
Find z € R* such that

(4,-3,1,7) + 2z = (5,9, —6, 8).

Solution
First, suppose that such an element x exists, then there exist a, b, c,d € R such that
xr = (a,b,c,d) and

(4+2a,—3+2b,1 4 2¢,7+2d) = (5,9, —6,8)

But notice that this is equivalent to the following system of equations:

442a=>5
—3+2=9
14+2c= -6
7T4+2d=28
which implies that
a=31
2
b=6
c=1
1
d — 5
Therefore, we get that z = (1,6,1,1) € R* is indeed a solution to our original

equation.

Exercise 10
Explain why there is does not exist A € C such that

A2 = 30,5+ 4i, —6 + Ti) = (12 — 5i, 7 + 22i, —32 — 9i).

Solution
By contradiction, suppose there exists a complex number A = a + b such that

A2 — 30,5444, —6 + Ti) = (12 — 53, 7 + 221, —32 — 9i)
Then, we would get the following system of equation:

A2 = 3i) =12 — 5i
A(B + 44) = T+ 22i
A(—6 + Ti) = —32 — i

which is equivalent to
A=3+2
A=3+2

_ 129, ;218
A=% tigs
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129 4 ;218

We clearly have a contradiction since 3 + 2i # Therefore, there doesn’t

exist such a complex number A.

Exercise 11
Show that (x +y)+z2=2+ (y+z) for all z,y,z € F™.

Solution
First, write

r=(T1,,Tn), Y= W1,-¥n) and z=1(z1,...,2,)

Since addition is commutative in F, we get

(@+y)+2z=[(21, s ) + Y1, Yn)] + (2155 20)
(:c1+y1,.. Tn+Yn) + (21, .y 20)
= ([z1 +yi] + 21, s [ﬂfn+yn] + 2n)
= (z1+ [y1 + 2], - + [Yn + 2n])
= (21, ..., ) + (914—217- o Yn + Zn)
(xl,.. n) 11, o ) + (21, s 20)]
=z+ (y+ 2)

which proves that addition is associative in F”.

Exercise 12
Show that (ab)x = a(bz) for all x € F™ and all a,b € F.

Solution
First, write x = (1, ..., z,). Using associativity of multiplication in F, we get
(Gb)I = (Clb)({,(}b ) xn)
= ((ab)xb ) (ab)xn)
= (a(bxy), ..., a(bx,))
= a(bxy,...,bz,)
= a[b(z1, ..., T,)]
= a(bx)

which proves the desired formula for all z € F” and all a,b € F.

Exercise 13
Show that 1z = z for all x € F™.

Solution
Let x = (x1, ..., z,) € F". Hence,

le = Lz, ..., xy)
:<1'.I'1,.. 1$n>

= (21,0 2n)
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which proves the desired formula for all x € F".

Exercise 14
Show that A\(x +y) = Az + Ay for all A € F and z,y € F".

Solution
Let A € F and z,y € F" with z = (21, ...,2,) and y = (1, ..., yn). Using distribu-
tivity in F, we get

Mz +y) = AN(x1, ooy 2n) + (Y1, ey Yn)]
= Mx1 4+ Y1y ooy Tp + Yn)
= (AMz1 4+ v1), s A(@n + Yn))
= (Ax1 + A\y1, ooy, ATy + AYp)
= (AZ1, .., ATp) + (AYL, ey AYR)
=M1, ooy ) + My, ooy Yn)
= \r + \y

which proves the desired formula.

Exercise 15
Show that (a + b)z = azx + bx for all a,b € F and all =z € F™.

Solution
Let a,b € F and = = (x4, ..., z,) € F". Using distributivity in F, we get

a+b)(zy,...,x,) =((a+b)xy,...,(a+b)xy,)
axry + bxy, ..., ax, + bx,)

(a + b)x = (
-
= (axy,...,ax,) + (bxy, ..., bx,)

=a(zy, ..., n) + b(x1, ..., x)
=ar + bx

which proves the desired formula.
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1B Definition of Vector Space

Exercise 1
Prove that —(—v) = v for every v € V.

Solution
Let v € V, by definition, we know that by definition, —v is defined as the only vector
in V satisfying

v+ (—v)=0
which is equivalent to

(—v)+v=0
by commutativity of addition in V. However, notice that by definition, —(—wv) is
the unique vector satisfying

(=v) +[=(=v)] =0

But since v itself also satisfies this equation, we get —(—v) = v by uniqueness.

Exercise 2
Suppose a € F, v € V', and av = 0. Prove that a =0 or v = 0.

Solution
Suppose that a # 0, then by properties of F, the inverse a~
multiply by a~! on both sides, we get

! exists. Hence, if we

av=0 = a '(av) =a 0
= (a'a)v=0
== lv=0
= v=0

Therefore, we either have a =0 or v = 0.

Exercise 3
Suppose v, w € V. Explain why there exists a unique x € V such that v + 3z = w.

Solution

By properties of vector spaces, since v € V', then —v € V. Similarly, since w and —v
are in V, then w+ (—v) € V. Finally, since w + (—v) € V, then 37} (w + (—v)) € V.
Thus, define z; as the vector 37! (w + (—v)) in V. Notice that

v+ 3z = v+ 337w+ (—v))]
=v+(3-37)(w+ (-v))
=v+ 1(w+ (—v))
=v+ (w+ (—v))
=v+ ((—v) +w)
=+ (—v))+w
=04+w

= w
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which shows that the equation has at least one solution. To prove uniqueness, let
x1 € V be an arbitrary solution to the equation, then we get

V430 =w = (—v)+ (v+321) = (—v) +w

= ((—v)4+v)+3z =w+ (—v)
= 0+ 32, =w+ (—v)

— 3z =w + (—v)

— 37'(3x1) =3 Hw + (—v))
= (37'3)2; = ¢

= lx; = x9

= I = Ig

which proves that x is the unique solution to the equation.

Exercise 4
The empty set is not a vector space. The empty set fails to satisfy only one of the
requirements listed in the definition of a vector space. Which one?

Solution
The empty set doesn’t satisfy the axiom that states that there must be an additive
identity since the empty set is empty by definition.

Exercise 5
Show that in the definition of a vector space, the additive inverse condition can be
replaced with the condition that

Ov=0forallvelV.

Here, the 0 on the left side is the number 0, and the 0 on the right side is the additive
identity of V.

Solution

We already know that the axioms of a vector space imply that Ov = 0 for all v € V.
Hence, it suffices to prove that if we assume the axioms of a vector space without
the additive inverse condition, then we can prove the additive inverse condition if
we also assume the property that Ov = 0 for all v € V. Let v € V, the by the
distributive condition, we get

ov=0 = (1+(-1))v=
= lv+ (—1)v =
— v+ (—-1)v=0

which proves that v has an additive inverse for all v € V.

Exercise 6
Let oo and —oo denote two distinct objects, neither of which is in R. Define an
addition and scalar multiplication on R U {co, —0c0} as you could guess from the
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notation. Specifically, the sum and product of two reals numbers is as usual, and
for t € R define

-0 ift <0, o0 if t <0,
too =140 if t =0, t(—o00) =<0 if t =0,
o0 if t >0, —oo ift >0,

and

l+oo=00+1t=00+00=00
4 (=00) = (~00) + 1 = (~00) + (~00) = ~o0
00+ (—00) = (—o0) + 00 =0

With these operations of addition and scalar multiplication, is RU {oc0, —o0} a vec-
tor space over R? Explain.

Solution
With these operations of addition and scalar multiplication, R U {oo, —cco} cannot
be a vector space since

((—00) 4+ 00) +00=0+00 =00
and
(—00) + (00 + 00) = (—00) + 00 =0

which proves that addition isn’t associative under this operation.

Exercise 7

Suppose S is a nonempty set. Let V° denote the set of functions from S to V.
Define a natural addition and scalar multiplication on V°, and show that V° is a
vector space with these definitions.

Solution

For any f and g in V¥, define f +¢g:S — V by s — f(s) + g(s) for all s € S.
Similarly, for all & € F and f € V¥, define af : S — V by s — Af(s) for all s € S.
With these definitions, let’s prove that V* is a vector space.

e (commutativity) Let f,g € V7, let’s show that f +¢g =g+ f. Let s € S,
then by commutativity in V', we obviously have

(f +9)(s) = f(s) + 9(s) = g(s) + f(s) = (g + f)(s)
Since it holds for all s, then f+g=g¢g+ f.

e (associativity) Let f,g,h € V5 and s € S, then by associativity in V, we
have

[(f +9) + h](s) = (f + 9)(s) + h(s)

= [f(s) + g(s)] + h(s)
= f(s) +[g(s) + h(s)]
= [(s)+ (g +h)(s)
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Since it holds for all s € S, then (f +g) +h = f+ (g + h).
Let now f € V°, a,b € F and s € S, then by associativity in V, we get:

[(ab) f1(s) = (ab)f(s)
= a(bf(s))
= a(bf)(s)
= [a(bf)](s)

Since it holds for all s € S, then (ab)f = a(bf).

e (additive identity) Let’s denote by Oy s the zero function in V¥, then for all
feVSand s €S, we have

(f +Oys)(s) = f(s) + Oys(s) = f(s) + 0= f(s)
Since it holds for all s € S, then f + 0ys = f for all f € V5.

e (additive inverse) Again, let’s denote by Oys the zero function in V¥, then
for all f € V¥, we can define the function ¢ = (—=1)f € V5. Hence, for all
s €5, we get

(f +9)(s) = f(s)

Since it holds for all s € S, then f 4 g = Oys.

e (multiplicative identity) Let f € VV°, then for all s € S, we have

(1f)(s) = 1f(s) = f(s)
Since it holds for all s € S, then 1f = f.

e (distributive property) Let f,g € VS, a € F and s € S, then

[a(f + 9)](s) = a(f + g)(s)
= a(f(s) +g(s))
= af(s) + ag(s)
= (af)(s) + (ag)(s)
= (af + ag)(s)

Since it holds for all s € S, then a(f + g) = af +ag. Similarly, for all f € V¥,
a,be F and s € S, we have

[(a+0)f](s) = (a+b)f(s)
— af(s) +bf(s)
= (af)(s) + (bf)(s)
= (af +bf)(s)
Since it holds for all s € S, then (a+b)f = af + bf.
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Therefore, V¥ is a vector space under these definitions.

Exercise 8
Suppose V' is a real vector space.

e The complexification of V, denoted by Vi, equals V' x V. An element of V¢ is

an ordered pair (u,v), where u,v € V, but we write this as u + iv.
e Addition on V¢ is defined by

(ug + 1v1) + (ug + iv9) = (ug + ug) + i(vy + v2)

for all uy, vy, us,v9 € V.

e Complex scalar multiplication on V¢ is defined by
(a4 ib)(u +iv) = (au — bv) +i(av + bu)
for all a,b € R and all u,v € V.

Prove that with these definitions of addition and scalar multiplication as above, Vg
is a complex vector space.

Solution

e (commutativity) Let uy, vy, us, vo € V', then by commutativity in V', we have

(u1 + ivl) + (Ug + i?)g) = (Ul + UQ) + i(’Ul + Ug)
= (UQ + ul) + i(l)g + Ul)
= (UQ + iUQ) + (u1 + ivl)

which proves that addition is commutative.

e (associativity) Let uj,vq,ug, v, uz,v3 € V, then by associativity in V, we
have

[(u1 + 1v1) + (ug + tv9)] + (us + 1v3) = [(ug + ug) +i(vy + ve)] + (us + ivs)
= ([uy + ug] + ug) + i([v1 + vo] 4 v3)
= (uy + [ug + us]) +i(v1 + [v2 + v3])
= (uy +ivy) + [(u2 + uz) + i(vs + v3)]
= (uy + 1v1) + [(u2 + tv2) + (uz + v3)]

Let now a,b,c,d € R and u,v € V, then we get:

[(a+ bi)(c+ di)](u + iv)
= [(ac — bd) + i(ad + be)|(u + iv)
= [(ac — bd)u — (ad + be)v] + i[(ac — bd)v + (ad + be)ul
= [acu — bdu — adv — bev] + iacv — bdv + adu + beul
= [a(cu — dv) — b(cv + du)] + ila(cv + du) + b(cu — dv)]
= (a +ib)[(cu — dv) + i(cv + du)]
= (a+ib)[(c + id)(u + v)]

which proves the associativity condition.
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e (additive identity) For all u,v € V|
(u+iv) + (0+140) = (u+0) +i(v+0) =u+idv

which proves that 0 440 is an additive identity.

e (additive inverse) Let u,v € V, then since (—u), (—v) € V, we get

(u+iv) + ([—u] +i[—v]) = (u + [—u]) +i(v + [-v]) = 0 + 40

which proves that every element has an additive inverse.

e (multiplicative identity) Let u,v € V, then

(1440)(u+w) = (lu —0v) +i(lv + Ou) = u + w

which proves that 1 = 1 + 40 is a multiplicative identity.

e (distributive property) Let a,b € R and uy, vy, us,vo € V, then

(@ +1ib)[(u1 + iv1) + (ug + ivg)]

= (a + ) ([ur + uo] + ifv1 + vs])
alur + ug) — by + va]) + i(alvr + vo] + blur + us))
auy + aug — bvy — buy) + i(avy + ave + vy + bug)
l[auy — bu] + [aus — bus]) + i([avy + buy] + [ave + buy])
(auy — bvr) +i(avy + bug)] + [(aug — bvg) + i(avs + buy)]
(a +ib)(u1 + iv1)] + [(a + i) (ua + ivs)]

(
(
(
[
[

Similarly, for all a,b,c,d € R, and u,v € R, we have

[(a+ib) + (c+id)](u + v)
= ([a + ] + i[b + d])(u + iv)
= ([a + cJu — [b+dJv) +i([a + cJv + [b+ d]u)
= (au + cu — bv — dv) + i(av + cv + bu + du)
([aw — bv] + [cu — dv]) + i([av + bu| + [cv + du))
= [(au — bv) + i(av + bu)| + [(cu — dv) + i(cv + du)]
= (a+ib)(u + i) + (¢ +id)(u + v)

which proves the distributive property.

Therefore, Vi is a vector space under these definitions.
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1C

Subspaces

Exercise 1
For each of the following subsets of F3, determine whether it is a subspace of F2.

(2)
(b)
(c)
(d)

{(x1,29,73) € F3 : 21 + 229 + 323 = 0}
{(w1, 29, 23) € F3 : 21 + 279 + 373 = 4}
{(z1, 29, 23) € F* : 12923 = 0}
{( )

Ty, To,x3) € F3 1y = b}

Solution

(2)

First, define
U= {(1'1,512'2,.%'3) € F3 T+ 21’2 + 3%3 = O}

Let’s prove that it is indeed a subspace of F3. Since 0 +2-0+3-0 = 0,
then 0 = (0,0,0) € U. Now, let x,y € U be two arbitrary elements where
xr = (21,29, x3) and y = (y1, Y2, y3), then by definition:

{L‘1+21‘2+3$3 =0
Y1+ 2y2+3ys =0

Adding the two equations gives us
(z1 4+ 1) + 2(z2 +92) + 3(z5 +y3) =0+ 0 =10

which proves that x +y = (x; + y1, 29 + y2, 23 + y3) € U. Similarly, let
x = (21,29, x3) be an arbitrary element in U and « an arbitrary scalar in F,
then by definition of U:

I1+2I2+31’3:O

Multiplying by « on both sides gives us
(ax1) + 2(axs) + 3(axs) =a-0=0
which proves that ax € U. Therefore, U is a subspace of F3,

Since 0 = (0,0,0) doesn’t satisfy x; + 225 + 3x3 = 4, then the set of such
vectors cannot be a subspace since it doesn’t contain the zero vector.

Let U = {(z1,72,23) € F? : zy292z3 = 0} and notice that that both = =
(1,1,0) and y = (0,0, 1) are in U. However, x + y is obviously not in U since
r+y=(1,1,1) and 1-1-1 = 1. Therefore, U is not a subspace of F3.

Define U = {(x1, 29, 73) € F? : 11 = 53} and let’s show that it is a subspace
of F3. First, since 0 = 5 -0, then 0 = (0,0,0) € U. To prove that U is
closed under addition, let x = (z1,x2,x3) and y = (y1, y2, y3) be two arbitrary
elements of U, then by definition:

T — 51}3
Y1 = 5Y3
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By adding the two equations together, we get
z1 +y1 = 5(x3 + y3)

Thus, z+y = (1 +y1, T2+ Y2, 23 +y3) € U. Finally, to prove that U is closed
under scalar multiplication, let x = (x1, 25, x3) be an element of U and « € F,
then
r1 = brs = ax; = a(brs)
= ax; = b(axs)

Thus, axr = (axy, axy, axs) € U. Therefore, U is a subspace of F3.

Exercise 2
Verify all assertions about subspaces in Example 1.35:

(a) If b € F, then
{(z1, T, 23, 24) € F*: 25 = 5ay + b}

is a subspace of F* if and only if b = 0.

(b) The set of continuous real-valued functions on the interval [0,1] is a subspace
of RIO.

(c) The set of differentiable real-valued functions on R is a subspace of RR.

(d) The set of differentiable real-valued functions f on the interval (0,3) such that
f'(2) = b is a subspace of R(®% if and only if b = 0.

(e) The set of all sequences of complex numbers with limit 0 is a subspace of C*.

Solution

(a) Define Uy = {(x1, 72, 73,24) € F* : 23 = 54 + b} for all b € F and suppose
first that U is a subspace of F*, then it must contain the zero vector. Hence,
since (0,0,0,0) € U, then by definition:

0=5-0+0

which is equivalent to b = 0.
For the converse, let’s show that U, is a subspace of F4. Since 0 = 5 - 0, then
0=1(0,0,0,0) € Up. If z = (21,29, x3,24) and y = (y1, Y2, Y3, y4) are arbitrary
elements of Uy, then z3 = 54 and y3 = 5y,. By adding these two equations
and by distributivity, we get

T3+ Y3 = 5(x4 + ya)

which implies that 4y € Uy. Similarly, if z = (21, 29, 23, 74) € Uy and a € F,
then we get
3 =bry = axs = 5(axy)

which implies that ax € U,. Thus, Uj is a subspace of F*. Therefore, U, is a
subspace of F* if and only if b = 0.
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(b) Let C denote the set of real-valued continuous functions on the interval [0,1]
and Ogpo.1 the zero function which acts as the additive identity in R, Since
the constant zero function is continuous, then Ogp.y € C. Similarly, since
the sum of two continuous functions is continuous and the multiplication of a
continuous function with a scalar is still continuous, then C' is closed under
addition and scalar multiplication. Therefore, C' is a subspace of R,

(¢) The proof is similar to part (b). The constant zero function is differentiable
on R. Moreover, differentiable functions are closed under addition and scalar
multiplication. Therefore, the set of differentiable real-valued functions on R
is a subspace of RR.

(d) Define U, = {f : (0,3) — R differentiable : f'(2) = b} for all b € R. Suppose
that U, is a subspace of R(®3), then we must have 03y € U, where 03
denotes the constant zero function on (0,3). By definition of Uy, it implies

that 0f 3(2) = b. However, we know that 0f 5 (2) = 0. Thus, b= 0.

Conversely, let’s show that U, is a subspace of R(3). First, the constant
zero function Og.s on (0,3) which acts as the additive identity in R®%, is
differentiable on (0,3) and its derivative at 2 is 0. Hence, Ogw,s) € Up. Now,
let f,g € Uy, then f + g is differentiable on (0,3) and

f+9'2)=r2)+d2)=0+0=0

so f 4 g € Up. Similarly, for any f € Uy and o € F, the function af is still
differentiable on (0,3) and

(@f)(2) = af(2) =a-0=0

so af € Uy. Thus, Uy is a subspace of R(3). Therefore, U, is a subspace if
and only if b = 0.

(e) Let S be the set of sequences of complex numbers with limit 0. Since the addi-
tive identity (0,0, ...) of C*° converges to 0, then it is in S. Let (ap)n, (bn)n € S,
then

lim a, =0 and lim b, =0
n—o0 n—o0

which implies

lim (a, + b,) = lim a, + lim b, =0+0=0
n—oo

n—oo n—oo

Thus, (an)n + (bn)n € S. Similarly, for all (a,), € S and « € C, we have

lim aa, =« lim a, =a-0=0
n—oo n—oo

so a(an), € S. Therefore, S is a subspace of C>.

Exercise 3
Show that the set of differentiable real-valued functions f on the interval (-4, 4) such
that f/(—1) = 3f(2) is a subspace of R(=4%),
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Solution

Define the set U = {f : (=4,4) — R differentiable : f'(—1) = 3f(2)} and let’s
show that it is a subspace of R(=*%_ First, denote by f, to constant zero function on
(—4, 4) which is also the additive identity in R(—*%. We know that f; is differentiable
on (—4,4) with f] = fo. Hence, fj(—1) =0 = 3fy(2) which proves that f, € U.

To show that it is closed under addition, let f,g € U, then by definition, f and g
are differentiable on (-4, 4) and

If we add these two equations, we get

(f+9)(=1) =3(f+9)(2)

which proves that f 4+ g € U since f + g is differentiable on (-4, 4).
To prove that it is closed under scalar multiplication, let f € U and a € R, then

(1) =3f(2) = af (1) =a-3f(2)
— (af)'(=1) = 3(af)(2)
which proves that af € U since «f is differentiable on (-4, 4). Therefore, U is a
subspace of R(=4%).

Exercise 4
Suppose b € R. Show that the set of continuous real-valued functions f on the
interval [0, 1] such that [ f = b is a subspace of R®! if and only if b = 0.

Solution
Let b € R and define I = {f : [0,1] — R continuous : fol f = b}. Suppose that [ is

a subspace of RI®Y then the additive identity 0 : z — 0 must be in I so fol 0=0.

But we know that fol 0 = 0 so it follows that b = 0.
Conversly, let’s show that I is a subspace of R when b = 0. First, the additive
identity 0 is obviously continuous with fol 0=0s00e€l. Now,let f,g €I, then f

and g are continuous and
1 1
[r- [
0 0

It follows that f + g is a continuous function that satisfies

/01(f+g)=/01f+/olg=0

Hence, f + ¢ € I. Similarly, if f € I and o € R, then f is continuous and

[

which implies that o f is also continuous and

/Ol(af):a/olf:a-OZO
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Hence, af € I. Therefore, I is a subspace of RI%1.

Exercise 5
Is R? a subspace of the complex vector space C??

Solution

No, it isn’t because it is not closed under scalar multiplication since the scalars are
complex numbers. For example, (1,1) € R? but i(1,1) = (4,i) ¢ R?. Therefore, R?
is not a subspace of the complex vector space C2.

Exercise 6
(a) Is {(a,b,c) € R?: a® = *} a subspace of R3?
(b) Is {(a,b,c) € C*: a®> = ¢*} a subspace of C3?

Solution

(a) In R, the function z — 2? is bijective so if we define I = {(a,b,¢) € R?: a® =
3}, then we actually have I = {(a,b,c) € R® : a = ¢}. Hence, it is easier
now to show that I is a subspace of R3. Obviously, (0,0,0) € I since 0 = 0.
Moreover, if (x1, 22, x3) and (y;,ys2,ys3) are in I, then z; = z3 and y; = y3
which implies that x; +y; = x5+ y3. Hence, (x1 4+ y1, T2 + ¥, 3+ y3) in in 1.
Similarly, for (x1,z9,23) € I and a € R, we must have x; = x5 which implies
that ax; = azs. Thus, (axy, azs, axs) € I. Therefore, I is a subspace of R3.

(b) If we let I = {(a,b,c) € R® : a® = ¢*}, notice that (=%Y3 0,1) and
(_I_T*/gi, 0,1) are both elements of I. However, their sum is not in [ since

<_1+\/§i’0’1) i (‘1%@70,1) =(~1,0,2) ¢ I

Therefore, it is not a subspace of C? since it is not closed under addition.

Exercise 7

Prove or give a counterexample: If U is a nonempty subset of R? such that U is
closed under addition and under taking inverses (meaning —u € U whenever u € U),
then U is a subspace of R2.

Solution

Consider the set U = {(k, k) : k € Z} which is obviously closed under addition and
taking inverses. Notice that U is not a subspace because it is not closed under scalar
multiplication: (1,1) € U and 7 € R but 7(1,1) = (7, 7) ¢ U.

Exercise 8
Give an example of a nonempty subset U of R? such that U is closed under scalar
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multiplication, but U is not a subspace of R?.

Solution

Consider the set U = {(z,y) € R? : zy > 0}, let’s first show that it is closed under
scalar multiplication. Given (z,y) € U and a € R, we know by definition of U tht
xy > 0. Moreover, since « is a real number, then o > 0. Hence,

(a)(ay) = a%ry > 0

Thus, (ax,ay) € U so U is indeed closed under scalar multiplication. To show
that U is not a subspace, consider the elements (—1,0) and (0,1) in U and notice
that their addition cannot be in U since (—1) -1 2 0. Thus, U is not closed under
addition which proves that it is not a subspace.

Exercise 9

A function f : R — R is called periodic if there exists a positive number p such
that f(x 4+ p) = f(z) for all z € R. Is the set of periodic functions from R to R a
subspace of RR? Explain.

Solution

Let’s prove that this set is not a subspace of R® by showing that it is not closed
under addition. To do so, consider the functions z +— cos(x) and x — cos(mz)
defined on R. Obviously, both are periodic since the first one has period 27 and the
second one has period 2. Consider their sum f : cos(z) + cos(mx) and suppose by
contradiction that there exists a p > 0 such that

f(x) = f(z+p) (1)
for all z € R. Notice that

f(z) =2 = cos(x) + cos(mz) = 2

—> cos(z) =1 and cos(mz) =1

— x€2rZ and x€?2Z

— =0
Hence, f is equal to 2 if and only if x = 0. Thus, if we plug-in x = 0 in equation
(1), we get

f(p) = f(0) =2

which implies that p = 0, a contradiction since p > 0. Therefore, f is not periodic

which proves that periodic functions are not closed under addition. With a similar
argument, periodic functions are not closed under multiplication either.

Exercise 10
Suppose V; and V5 are subspaces of V. Prove that 1, N5 is a subspace of V.

Solution
Let’s show that V; N V5 satisfies the three subspace conditions:

e (additive identity) Since V; and V5, are subspaces, then they both contain
the additive identity 0 of V. It follows that 0 € V; N V5 since it is contained in
both sets.
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e (closed under addition) Let u and v be two vectors in V; N'V5, then u and v
must be contained in V;. Since V; is a subspace, then it is closed under addition
so u + v must also be an element of V. Similarly, v and v are contained in V5
so for the same reasons, u + v must be an element of V5. Thus, u+v € V1NV,
sinceu+veV;and u+v e Vs,

e (closed under scalar multiplication) Let a € F and u € V3 N V3, then u
must be contained in V;. Since V] is a subspace, then it is closed under scalar
multiplication so au must also be an element of V;. Similarly, u is contained
in V5 so for the same reasons, au must be an element of V5. Thus, au € V1NV,
since au € Vi and au € V5.

Therefore, V; N V5 is a subspace of V.

Exercise 11
Prove that the intersection of every collection of subspaces of V' is a subspace of V.

Solution
Let {V;}ie; be an arbitrary collection of subspaces of V', let’s show that N;e/V; is
also a subspace of V' by proving the three subspace conditions:

e (additive identity) Since V; is a subspace of V, then 0 € V; for all i € I. It
follows that 0 € N/ V;.

e (closed under addition) Let u and v be two vectors in N;e/V;, then v and
v must be contained in V; for all + € I. For any ¢ € I, V; is a subspace so it is
closed under addition, hence u + v € V. It follows that u 4+ v € N/ V.

e (closed under scalar multiplication) Let a € F and v € N;¢;. Foralli € I,
since u € V; and V; is a subspace, then au € V;. It follows that au € N,V
since au € V; for all i € I.

Therefore, N;c;V; is a subspace of V.

Exercise 12
Prove that the union of two subspaces of V' is a subspace of V' if and only if one of
the subspaces is contained in the other.

Solution

Let Vi and V5 be subspaces of V. If V; C V5 or Vo C Vi, then V3 U V5 must be a
subspace of V' as well. To show the converse, suppose now that V; U V5 is a subspace
of V' and that V; ¢ V5. Then there exists a vector u; € V; such that u; ¢ V5. Let’s
prove that V5 C Vj in that case. Let v € V5 be arbitrary, since u; and v are both
vectors in V3 U V5, then uy +v € V3 UV, since it is a subspace. But this implies that
uy + v is either in V4 or in V5. If uy +v € V5, then we must have

up = (ug +v)—v el

since v € V3 and V5 is a subspace. A contradiction since u; ¢ V,. It follows that
up + v € V4. But again, since V] is a subspace and u; € Vi, then

v:(ul—l—v)—ulevl
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which proves that V5, C V;. Therefore, if V; U V5 is a subspace, then we either have
VicVyor Vo C V.

Exercise 13
Prove that the union of three subspaces of V' is a subspace of V' if and only if one
of the subspaces contains the other two.

Solution

Let Vi, V5 and V3 be three subspaces of V. Obviously, if one contains the other two,
then V3 U V5 U V3 is also a subspace of V since it is either equal to Vi, V5 or V.

To show the converse, suppose that V7 U V5 U V3 is a subspace of V. To prove that
one subspace contains the other two, suppose that V; 2 Vo, U V3 and Vo, 2 V3 U Vs,
then it suffices to show that V3 contains V; U V5. Notice that Vi 2 V5, U V3 and
Vo 2 V1 U Vs implies the existence of vectors vy, vy € V such that

v1 EVIUV; v9 € Vo U V3
and
Ulﬁé‘/Q U2¢‘/1

To show that V3 D V4 U V5, let’s proceed by cases:

e Suppose that VUV, <V, then by the previous exercise, we must have VUV, C
V3 or V3 < V31UV, By contradiction, suppose that Vs C VUV, Since ViUV, <
V', then again, by the previous exercise, Vi C Vo or Vo, C V. If V) C V5, then
v € V1UV3 C Vo UV But, vy ¢ V80 vy € V3. However, V3 C VUV, = 14
so v; € Vo. A contradiction that shows that V; ¢ V,. Similarly, we can prove
in the same way using v, that V, C V;. Thus, by contradiction, we get that
V3 is not a subset of V; U V5. Tt follows that V3 U Vy C Vs,

e Suppose now that V3, UV; is not a subspace of V, then by the previous exercise,
Vi & Vo and Vo ¢ Vi, Tt follows that there exist vectors uy,us € V such that

u € Vi Uy € V5
and
U1¢‘/2 U2¢‘/I

Consider now the vector aju; + anue where oy and «y are non-zero scalars.
Since aqu; € Vi CVEUVLUV;, asug € Vo C VU VLU V3 and V3 U VLU Vs is
a subspace of V, then aju; + agug € V4 U Vo U Vs, If aqug + aug € Vi, then
using the fact that ayu; € V4 and that V] is a subspace gives us

Qolly = (alul + OCQUQ) —au; €V;

Multiplying by a, ' implies that uy € Vi, a contradiction. Similarly, if oyu; +
aguy € Vo, then we can show in the same way that u; € V5, another contra-
diction. Thus, we must have aju; + asus € V5.
Using the fact that 2 # 0, we get that uy + us, 2u; + us and uy + 2us are in
V3. Thus,

w = (2ug +ug) — (w1 +u2) € Vs

and
ug = (ug + 2ug) — (ug +uz) € V3

We are now ready to show that V; UV, C Vi in that case. To do so, let
w € V3 UV, and proceed again by cases:
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— Suppose that w € V; \ V5 and consider the vector w + uy € V4 U V4 U V.
If w+ uy € V4, then uy € V4, a contradiction. Similarly, if w + uy € V5,
then w € V5, a contradiction. Hence, w + us € V3. But since uy € V3,
then w € V3.

— Suppose that w € V5 \ V; and consider the vector w + u; € V3 U Va U V.
If w+wu, € Vi, then w € Vi, a contradiction. Similarly, if w 4+ u; € V5,
then u; € V5, a contradiction. Hence, w + u; € V3. But since u; € Vs,
then w € V3.

— Suppose that w € V;NV5 and consider the vector w+u;+us € ViUVLUV3.
If w+u;+us € Vi, then uy € V4, a contradiction. Similarly, if w4u;+us €
V5, then uy € V5, a contradiction. Hence, w + u; + us € V3. But since
uy + ug € V3, then w € V3.

Thus, V; UV, C V.

Hence, in all possible cases, we get that V; UV, C V3. Therefore, the union of three
subspaces is a subspace if and only if one of the subspaces contains the other two.

Exercise 14
Suppose

U={(v,—z,22) €F*:2€F} and W ={(r,2,20) € F*:2€F}

Describe U + W using symbols, and also give a description of U + W that uses no
symbols.

Solution
By definition, we have

U+W ={(x,—2,27) € F*: 2 € F} + {(v,2,22) € F* : 2 € F}
={(z+y,—r+y22+2y) € F’ 2,y € F}
={(z+y,—r+y2@+y) c¢F . 2ycF}

From this expression, let’s prove that
U+ W ={(a,b,2a) € F*:a,b € F}

Obviously, U + W C {(a,b,2a) € F? : a,b € F} because for any vector (z +y, —z +
y,2(x +y) € F3, if we let a = x +y and b = —x + y, we can rewrite this vector as
(a,b,2a) which is in {(a,b,2a) € F3: a,b € F}. Similarly, given an arbitrary vector
(a,b,2a) € F3 if we let

a—>b T +y
5 and y =

Tr =

then we can rewrite the vector as (x + y, —x + y,2(z + y)) which is obviously in
U+ W. It follows that the sets are equal. Without symbols, this just means that
U + W is precisely the set of vectors in V' such that the third component is twice
the first component.
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Exercise 15
Suppose U is a subspace of V. What is U + U?

Solution

Let’s show that U = U + U. An arbitrary element in U 4 U is of the form x + y
where x and y are in U. Since U is a subspace, then it is closed under addition
which implies that  +y € U. Tt follows that U + U C U.

For the reverse inclusion, take an arbitrary v € U and notice that we can write
u = u+ 0. Again, since U is a subspace of V, then 0 € V. Thus, in the expression
u+0, both vectors are in U. It follows that u = u+0 € U+U. Therefore, U = U+U.

Exercise 16
Is the operation of addition on the subspaces of V' commutative? In other words, if
U and W are subspaces of V,isU+W =W +U?

Solution
Let U and W be subspaces of V. Then by commutativity of addition in V| we get

U+W={u+w:ueUandwe W}
={w+u:weWand ue U}
=W+U

Therefore, the operation of addition on subspaces of V' is commutative.

Exercise 17
Is the operation of addition on the subspaces of V' associative? In other words, if
Vi, Vo and V3 are subspaces of V, is

Vi+ Vo) + Vs =V, + (Vo + V5)7

Solution
Let Vi, V5 and V3 are subspaces of V' and let’s show that

Vi+ V) +Va=V + (Vo +15)

First, take an arbitrary z +y € (Vi + V2) + V3 where z € V; + V5 and y € V3. Since
x € Vi + Vs, then there exist vectors a € Vi and b € V; such that x = a +b. It
follows from the associativity of addition in V' that

r+y=(a+b)+y=a+(b+y)

Since b € Vo and y € Vi, then b+y € Vo+Vs. Hence, a+(b+y) € Vi +(Va+V5) using
the fact that @ € Vi. Thus, the arbitrary x +y € (Vi + V5) + Va is in Vi + (Vo + V3)
as well so

Vi+Va) + Vs CVi+ (Va+ V3)

The reverse inclusion has the same proof. The desired equality follows.
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Exercise 18
Does the operation of addition on subspaces of V' have an additive identity? Which
subspaces have additive inverses?

Solution

First, let’s show that indeed, the operation of addition on subspaces of V' has an
additive identity. Define I = {0}, the subspace of V' containing the zero vector only.
Take an arbitrary subspace U of V and notice that

U+I={u+i:ueUandiel}
={u+0:uecUandiecl}
={u:ueU}
=U

By commutativity of addition of subspaces of V', we also have I +U = U. Therefore,
I is an additive identity for the addition on subspaces of V.
Concerning additive inverses, let’s determine which subspaces of V' have an additive
inverse by taking an arbitrary subspace U of V' and supposing that there is a subspace
W of V such that V 4+ W = I. Since W is a subspace of V, then 0 € W. It follows
that for all u € U,

u=u+0ecU+W=1={0}

In other words, U = {0} = I. Since I obviously has an additive inverse (itself),
then the unique subspace having an additive inverse is I.

Exercise 19
Prove or give a counterexample: If Vi, V5, U are subspaces of V' such that

Vi+U=V+0,

then V) = V5.

Solution
Consider the following counterexample. Let V; = U =V and V, = {0}. We know
from Exercise 15 of this section that

Vi+U=V4+V =V
Moreover, from Exercise 19, we also have
Vo+U={0}+V =V

Thus,
Vi+U=VW+U

but Vj #£ V5.
Exercise 20

Suppose
U={(v,2,y,y) € F*: 2,y € F}.
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Find a subspace W of F* such that F* =U @& W.

Solution
Consider the subspace

W ={(0,a,0,b) € F*:a,b € F}

and the sum U+W. First, let’s show that the sum is direct by proving that (0,0, 0, 0)
has a unique representation in this sum. Suppose (z,z,y,y) € U and (0,a,0,b) € W
satisfy

(0,0,0,0) = (z,z,y,y) + (0,a,0,b)

This is equivalent to the system of equation

x=10
a+x=0
y=20
b+y=0

which clearly has the following unique solution

x=0
a=20
y=20
b=0

Therefore, in U + W the zero vector can only be written as the sum of two zero
vectors. It follows that the sum is direct.

Let’s now show that U @& W = F* by taking an arbitrary vector (zi,xs,x3,24).
Consider the vectors

u=(x1,21,23,23) €U and w= (0,29 —21,0,24 —x3) €W
and notice that

u 4w = (21, 21,23, 23) + (0,29 — 21,0, 24 — 3)
= (21,21 + T2 — T1, 73, T3 + T4 — T3)

= ($1,$2,$3,$4)

which shows that (z1, 29, 23,24) € U ® W. Thus, F* C U ® W. Since U and W
are subspaces of F*4, then U @& W must also be a subspace of F*: U ® W C F%
Therefore, we get U & W = F4.

Exercise 21
Suppose
U={(z,y,v+y,xv—y,2r) €F° 2,y € F}.

Find subspace W of F® such that F5 =U ¢ W.
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Solution
Consider the subspace

W ={(0,0,a,b,c) € F° : a,b,c € F}

and consider the sum U + W. Let’s first prove that it is actually a direct sum by
focusing on the vector zero. Let (z,y,x +y,z —y,2x) € U and (0,0,a,b,c¢) € W be
two vectors such that

(0,0,0,0) = (z,y,x +y,x —y,2z) + (0,0,a,b,c)

This translates to the following system of equation:

(2 =0
y=20
r+y+a=0
r—y+b=0
(22 +c=0
which is equivalent to
z=0
y=20
a=20
b=0
Kc:O

Therefore, since the zero vector can only be written as the sum of two zero vectors,
the sum is direct.

Let’s now show that U & W = F°. Obviously, since U @ W is a subspace of F?, we
have U & W C F°. Moreover, for any (1, T2, 73, T4, T5) € F?, we have

(71, T2, T3, T4, T5)
= (21, X2, [v1 + @2] + [x3 — T2 — 21], [11 — T2] + [14 + T2 — 21], 221 + [15 — 221])
= (21,29, 1 + T2, 1 — X2, 221) + (0,0, 23 — xo — 1,24 + T — T1, 25 — 227)
= (x,y,x+y,x —y,2x)+ (0,0,a,b,c)
ceUaoW

where v = 21, y = x93, a = 3 — 9 — 21, b = x4 + x5 — x1 and ¢ = x5 — 2x1. Thus,
F° Cc U@ W. Therefore, U @ W = F?.

Exercise 22
Suppose
U={(z,y,x+y,x—y2z) eF :zyecF}

Find three subspaces Wi, W), W3 of F? none of which equals {0}, such that
FP=UoW, &W,dWs.
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Solution
Consider the subspaces

Wi ={(0,0,a,0,0) € F>:a € F}
W, ={(0,0,0,0,0) € F* : b € F}
W3 ={(0,0,0,0,c) € F*: c € F}

and their sum U + W, + Wy + W3, Let’s first prove that it is actually a direct sum
by focusing on the zero vector. Let

uw=(x,y,x+y,x—y,2zx) €U
wyp = (0, 0, a, O, 0) S W1
Wy = (O, 0,0,b, 0) e W,
ws = (0,0,0,0,c) € W;
be arbitrary vectors in their respective sets such that

(0,0,0,0,0) = u + wy + wy + ws

This can be rewritten into the following system of equation:

(2 =0
y=20
r+y+a=0
r—y+b=0
(22 +c¢=0
which is equivalent to
(2 =0
y=20
a=20
b=0
Kc:O

Hence, u = wy = we = w3 = (0,0,0,0,0). Therefore, since the zero vector can only
be written as the sum of zero vectors, the sum is direct.

Let’s now show that U & W, @ W, @ W5 = F°. Obviously, since U ® W, & Wy @
W3 is a subspace of F°, we have U & W; @ Wy, & W5 C F>. Moreover, for any
(21,79, 73, 74, 75) € F°, we have

(21, o, T3, Xy, Ts5)
= (21, T2, [v1 + x2] + [X3 — T2 — 71, [11 — Ta] + [T4 + T2 — 71], 221 + [15 — 221])
= (21, T, 1 + o, 1 — x2,221) + (0,0, 23 — xo — 1,24 + T — T1, 25 — 227)
= (z,y,x+y,z —y,2z)+(0,0,a,b,c)
= (z,y,z+y,z—y,2z)+ (0,0,a,0,0) + (0,0,0,b,0) + (0,0,0,0, )
ceUas W
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where x = 21, y = 29, a = 3 — 9 — 11, b = x4 + x5 — 1 and ¢ = x5 — 2x1. Thus,
F° cU® W, ® W, ®Ws. Therefore, U ® W, & Wy @ Wy = F°.

Exercise 23
Prove or give a counterexample: If V;, V5, U are subspaces of V' such that

V=VieU and V=V,
then V| = V5.

Solution
Consider the following counterexample:

V =R?

Vi={(0,z):x € R}
Vo ={(z,z) : 2 € R}
U={(z,0): 2z € R}

I will not prove that Vi, V5 and U are subspaces of V' because it is not goal of this
exercice. Notice that

Vi+U={(z,y) 2, ye R} =R*=V
Moreover, for any arbitrary v = (0,y) € V; and y = (2,0) € U, if
(0,0) =u+v = (z,y)

then it follows that u = v = (0,0) since x = y = 0. Hence, V1 ® U = V. Similarly,
let’s show that Vo @ U = V. To do so, let’s first prove that V5, + U = V. Since
Vo+ U C V, it suffices to prove that V' C Vo +U. Let (a,b) be an arbitrary element
in V', then we have

(z,y) = (@ —y,0)+ (y,9) €Va+ U
Hence, Vo + U = V. To prove that the sum is direct, let (z,z) € V, and (y,0) € U
such that

(I + y,.f) = (ZE,CL’) + <y70> - (070)

Since it follows that z = 0 and y = 0, then it follows that the zero vector can only
be written as a sum of two zero vectors in V5 + U. Thus, Vo ® U = V. However,
notice that Vj # V; since (1,1) € V, but (1,1) ¢ V4.

Exercise 24
A function f: R — R is called even if

f(=z) = f(z)
for all z € R. A function f: R — R is called odd if
f(=z) = —f(z)

for all x+ € R. Let V. denote the set of real-valued even functions on R and V,
denote the set of real-valued odd functions on R. Show that RR =V, @ V,.
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Solution
First, let’s show that RR = V, @ V,. Since V., @ V, C RR, then it suffices to prove
that RR Cc V, ® V. Given an arbitrary function f € RR, define

f = 1OHIED gy @S

for all x € R. Notice that for all x € R, we have

f((=2)) + f(=(=2))

fe(_x) = 2
_ f=n)+ @)
2
= fe(z)
and
fo(a) = f(==)) —2f(—(—56))
_ f=0) = f()
2
_ f)— f(=a)
2
= fo(z)

which proves that f. € V. and f, € V,. Moreover, for all x € R

TEFYAREP(GRY (C. I IR (I B

so f = f.+ f, € V. +V,. Therefore, RR = V, + V, since we just proved that
RR C V_+V,. Let’s now show that the sum is direct by proving that the zero function
can be represented as f. + f, where f. € V, and f, € V, only when f. = f, = 0. To
prove this, consider two arbitray functions f, € V, and f, € V, such that

Je(@) + fo(x) =0

for all x € R. Then, given any y € R, we have

fey) + foly) =0

and
fe(=y) + fo(=y) =0 = fe(y) — foly) =0

by plugging-in x = y and z = —y into our previous equation. Adding the two
equations gives us

[fe() + fow)] + [fely) = foly)] =0 = 2fc(y) =0
— fe(y) =0

It follows that f,(y) = 0 as well since f.(y) + fo(y) = 0. Thus, since it holds for all
y € R, then f. = f, = 0. Therefore, RR =1, @ V,.



Chapter 2

Finite-Dimensional Vector Spaces

2A  Span and Linear Independence

Exercise 1
Find a list of four distinct vectors in F? whose span equals

{(z,y,2) €eF*: 2 +y+2=0}

Solution

Consider the following list of vectors: (—1,0,1), (0,—1,1), (1,1,—2) and (-1, 1,0).
To prove that it spans the given set, take an arbitrary (z,y,2) € F? such that
x +y + z = 0 and notice that

(x,y,2) = (—x)(—1,0,1) + (—y)(0,—1,1) +0(1,1,—2) + 0(—1, 1,0)

Hence, the given set is in the span of the four vectors. Moreover, any element is the
span of the four vectors is in the given set since the four vectors are in the set and
the set is closed under linear combinations.

Exercise 2
Prove or give a counterexample: If vy, v9, v3, v4 spans V, then the list

V1 — V2,V — VU3, V3 — U4, Vs

also spans V.

Solution
Let’s prove it. Define the vectors

U1 = V1 — U2
U9 = Vg — Ug
U3 = V3 — Uy
Ug = Uy

and B as the set containing these four vectors. To show that B spans V', we need to
prove that for any element v € V', there exists a linear combination of the elements

32
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in B equal to v. To do so, let v € V, since vy, vy, v3,v4 spans V', then there exist
coefficients a, ag, a3, gy € F such that

UV = V1 + Q¥ + (\3V3 + Q44

Now, notice that we can write vy as uy +us + uz + Uy, V9 as Us + Uz + Uy, V3 aS Uz + Uy
and vy simply as uy. Hence:

UV = QU1 + Qa9 + Qi3V3 + Qg4
= (U + ug + us + ug) + ao(ug + us + ug) + az(us + ug) + aguy
= aquy + (ag + a)ug + (a1 + ag + ag)ug + (1 + as + ag + ay)uy

Thus, we get that v can be written as a linear combination of the vectors in B.
Therefore, B spans V.

Exercise 3
Suppose vy, ..., v, is a list of vectors in V. For k € {1,...,m}, let

Wi = V1 + ... + V.
Show that span(vy, ..., v,,) = span(wy, ..., Wy,).

Solution
First, notice that for all £ € {2,...,m}, we have

Vg = Wy — Wg_1 € span(wy, ..., Wy,)

(for k =1, vy = wy € span(wy, ..., wy,,)). Hence, since span(vy, ..., v,) is the smallest
subspace containing the vectors vy, ..., v, and span(wy, ..., w,,) is a subspace that
contains the vectors vy, ..., vp,, then span(vy, ..., v,) C span(ws, ..., Wy, ).

Similarly, by definition, for all & € {1,...,m}, we have

W = U1 + ... + v € span(vy, ..., V)

Hence, since span(wy, ..., wy,) is the smallest subspace containing the vectors wy, ..., Wy,
and span(vy, ..., v, ) is a subspace that contains the vectors wy, ..., w,,, then span(wy, ..., w,,) C
span(vy, ..., v, ). Therefore, span(vy, ..., v,,) = span(wy, ..., Wy,).

Exercise 4

(a) Show that a list of length one in a vector space is linearly independent if and
only if the vector in the list is not 0.

(b) Show that a list of length two in a vector space is linearly independent if and
only if neither of the two vectors in the list is a scalar multiple of the other.

Solution
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(a) Consider the list containing the single vector vy. By definition, the list is
linearly independent if and only if the only choice of scalars in a linear combi-
nation of the vectors in the list that is equal to zero is all of the scalars being
equal to zero. In our case, this is equivalent to saying that avy = 0 only when
a = 0. However, if it holds, then vy cannot be the zero vector since otherwise,
avg = 0 even when a # 0. Similarly, if vy is not the zero vector then avg = 0
can only happen when o« = 0. Thus, avy = 0 only when o = 0 is equivalent to
vg # 0. Therefore, the list is linearly independent if and only if vy is not the
Zero vector.

(b) For this one, let’s prove the converse equivalence: the list is linearly dependent
if and only if one vector is a scalar multiple of the other. To do so, suppose
that the list is linearly dependent, then there exist scalars «, 8 € F such that

Qv +6U2 =0

but not all scalars are zero. Suppose without loss of generality that a # 0,
then we can rewrite the previous equation as

V1 = ——V2
(e

Thus, v is a scalar multiple of v,.

For the reverse implication, suppose that one of the vectors is a multiple of
the other. Without loss of generality, suppose that v; is a scalar multiple of
Vo, then there exists a scalar a € F such that v; = av,. But notice that we
can rewrite the previous equation as follows:

(1)’01 + (—OZ)UQ =0

Since 1 # 0, then there exists a non-trivial linear combination of the vectors
in that list that is equal to zero. Thus, the list is linearly dependent.

Exercise 5
Find a number ¢ such that
(3,1,4),(2,-3,5),(5,9,¢t)

is not linearly independent in R3.

Solution
If we take ¢t = 55/2, then we can write the vector (5,9,¢) as «(3,1,4) + (2, —3,5)
where a = 15/2 and = —1/2. Hence,

a(3,1,4) + p(2,-3,5) + (—=1)(5,9,) =0

is a non-trivial linear combination. Thus, with such a value of t, the three vectors
are not linearly independent.

Exercise 6
Show that the list (2,3,1), (1,-1,2),(7,3,c) is linearly dependent in F? if and only if
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c= 8.

Solution
( = ) Suppose that the list (2,3,1), (1,-1,2),(7,3,¢) is linearly dependent in F3, then
there exist scalars a, 3,y € F not all zero such that

a(2,3,1) + B(1,-1,2) + v(7,3,¢) = 0

If v =0, then we get that a (2,3,1) and (1,-1,2) are linearly dependent. However,
this is impossible since (2,3,1) is not a scalar multiple of (1,-1,2) and vice versa.
Thus, v must be non-zero. Thus:
«(2,3,1)+ p(1,-1,2) +~v(7,3,¢c) =0 = ~(7,3,¢) = —a(2,3,1) — B(1, -1, 2)
s

v
— (7,3,0) = ——(2,3,1) — =(1,-1,2)
( ) 7( ) 7(

Hence, if we let a = —a/y and b = —(/~, then
(7,3,¢) = a(2,3,1) + b(1,—1,2)

which can be written as the following system of equation:

2a+b=7
3a—b=3
a+2b=c

To solve the system, we can add equation 1 and 2 to get 5a = 10. It follows that
a = 2. If we plug-in a = 2 is equation 2, we get 6 —b = 3 so b = 3. Thus, we get
that c=a+2b=2+2-3=28.

( <= ) Suppose that ¢ = 8. Using our work from the previous implication gives us

(7,3,¢) = 2(2,3,1) + 3(1,—1,2)
which can be rearranged as
2(2,3,1)+3(1,—-1,2) + (—1)(7,3,¢) =0

Thus, since there exists a non-trivial linear combination that is equal to zero, then
the three vectors are linearly dependent.

Exercise 7

(a) Show that if we think of C as a vector space over R, then the list 1 44,1 —
is linearly independent.

(b) Show that if we think of C as a vector space over C, then the list 1 +4,1 — i
is linearly dependent.

Solution
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(a) By contradiction, suppose that 1+ 4,1 — ¢ is linearly dependent, then using
Exercise 4.(b), we know that there is a scalar o € R such that

l+i=a(l—1i)=a+ (—a)i

But by the unique representation of complex numbers in the form a + ib, we
get that « = 1 and —a = 1, a contradiction. Thus, the list 1 + 1,1 — ¢ is
linearly independent.

(b) Simply notice that
(1+1) + (—=i)(1 —4) =0

even if the scalars are not all zero. Therefore, the list 1 + 4,1 — ¢ is linearly
dependent.

Exercise 8
Suppose vq, Ug, v3; vy 18 linearly independent in V. Prove that

V1 — VU2,V — VU3, V3 — U4, Vg

is also linearly independent.

Solution
To prove that vy —vy, vo —v3, V3 — vy, v4 is linearly independent, take arbitrary scalars
a,b,c,d € F such that

CL(Ul — UQ) + b(UQ — ’03) + C(Ug — U4) + dU4 =0

and prove that a = b = ¢ = d = 0. First, notice that we can rearrange the previous
equation as follows:

a(vy — vg) + b(vg — v3) + ¢(v3 — vy) + dvg =0
= av; — avy + bvg — bug + cvg — cvg + dvg =0
- GU1+(b—a)U2+(C—b)U3+(d—C)U4:O

But since the list vy, v9, v3,v4 is linearly independent, then all coefficents in the last
equation must be zero. Hence, we get the following system of equation:

a=20

b—a=0
c—b=0
d—c=0

which is equivalent to

a=20
a=b=c=d

It follows that a = b = ¢ = d = 0. Therefore, the given list is linearly independent.
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Exercise 9
Prove or give a counterexample: If vy, vs,...,v,, is a linearly independent list of
vectors in V, then

5v1 — 4o, V9, U3, ..., Uy

is linearly independent.
Solution

To prove that bvy — 4vg, v9, v3, ..., Uy, 18 linearly independent, take arbitrary scalars
ai, ..., a,m € F such that

a1 (5v1 — 4vs) + aguy + azvz + ... + apvy, =0

and prove that a; = as = ... = a,, = 0. First, notice that we can rearrange the
previous equation as follows:

a1 (5v; — 4vg) + aguy + azvz + ... + apvy =0
= bayv; — 4a1vs + asUy + asvs + ... + Uy, =0
— Hayv + (ay — 4ay)vy + azvz + ... + apvy, =0

But since the list vy, vs, ..., vy, is linearly independent, then all coefficents in the last
equation must be zero. Hence, we get the following system of equation:

(5011 =0
a9 — 4(11 =0
ag = 0
(am =0
which is equivalent to a; = ay = ... = a,, = 0 by solving the system. Therefore, the

given list is linearly independent.

Exercise 10
Prove or give a counterexample: If vy, vy, ..., v,, is a linearly independent list of vec-
tors in V and A € F with A # 0, then A\vy, Avg, ..., Avy, is linearly independent.

Solution
To prove that A\vy, Avs, ..., Avy, is linearly independent, take arbitrary scalars aq, ..., a,, €
F such that

CLl)\Ul + CLQ)\UQ + ...+ (Lm)\Um =0
and prove that a; = as = ... = a,, = 0. But since the list vy, vq, ..., v,, is linearly
independent, then all coefficents in front of the a;’s the last equation must be zero.
Hence, we get the following system of equation:

/\a1:0
/\CLQZO

A, =0
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Using the fact that A # 0, we can divide each equation in the system to get
a1 = ag = ... = a,, = 0. Therefore, the given list is linearly independent.

Exercise 11
Prove or give a counterexample: If vy, ..., v, and wy, ..., w,, are linearly independent
lists of vectors in V, then vy + wq, ..., v,, + w,, is linearly independent.

Solution

Consider the following counterexample: take any list vy, vy, ..., v, of linearly in-
dependent vectors. We know from Exercise 10 that if we take A = —1, then
—v1, —Ug..., —Up, is also linearly independent. However, the list vy + (—v1), ..., vy +

(—vy,) is precisely equal to the list containing m zero vectors. Thus, v1+(—v1), ..., U+
(—vy,) is not linearly independent since any linear combination of the vectors in that
list gives the zero vector, even if some scalars are non-zero.

Exercise 12
Suppose v1, ..., U, is linearly independent in V and w € V. Prove that if v; +
W, ..., Uy, + w is linearly dependent, then w € span(vy, ..., vy,).

Solution
Suppose that v +w, ..., v, +w is linearly dependent, then there must be some scalars
ai,...,a, € F not all zero such that

ar(vy +w) + az(ve + w) + ... + ap(Vy +w) =0
But notice that we can rewrite the previous equation as follows:
(a1 4+ as + ... + apm)w = a1(—v1) + ao(—v2) + ... + am(—vy)
Define a = a; + as + ... + a,, so we can rewrite again the equation as
aw = ay(—v1) + as(—v2) + ... + apm(—vm)

and suppose by contradiction that a = 0. If @ = 0, then the previous equation
becomes:
ar(—v1) + ag(—ve) + ... + ap(—vy) =0

Using Exercise 10, by linear independence of vy, ...,v,, and by taking A = —1, we
get that the list —vq, ..., —v,, is linearly independent as well. Hence, the previous
equation implies that a; = ay = ... = a,, = 0. But this is a contradiction with

the fact that the scalars aq, ..., a,, are not all zero. Thus, by contradiction, a # 0.
Hence:

aw = a1 (—v1) + as(—va) + ... + A (—Vp)
aq as A

S ) L P s P
o o «a

which proves that w € span(vy, ..., vp,).

Exercise 13
Suppose vy, ..., Uy, is linearly independent in V' and w € V. Show that

U1, vy U, W 18 linearly independent <= w ¢ span(vy, ..., vy,).
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Solution
( =) By contrapositive, suppose that w € span(vy, ..., v,,), then there exist coeffi-
cients coefficents aq, ..., a,, € F such that

W= a1V1 + ... + @V,
which can be rewritten as
a1vy + . + vy + (—1)w =0
Notice that not all scalars in this linear combination are zero. It follows that the

list vy, ..., v, w is linearly dependent.

( <= ) Again, by contrapositive, suppose that vy, ...,v,,,w is linearly dependent,
then there exist coefficients aq, ..., a,,, « € F not all zero such that

aivy + ... + apnv, +aw =0
By contradiction, if a = 0, then we get
a1 + ... + apv, =0

which implies, by linear independence of vy, ..., v,, that all coefficents are zero. A
contradiction since we know that at least one of them is non-zero. Thus, by contra-
diction, we have that a # 0:

aivy + ... + appvy, +oaw =0

— — QW = a1V + ... + @npUy

a1 a2 Qm
— W = (——) V1 + (——) Vg + ...+ (——) Um
Q Q o

which proves that w € span(vy, ..., vy,).

Exercise 14
Suppose vy, ..., vy, is a list of vectors in V. For k € {1,...,m}, let

W = V1 + ... + Vg.

Show that the list vy, ...v,, is linearly independent if and only if the list wy, ..., w,, is
linearly independent.

Solution
( = ) Suppose that vy, ...v,, is linearly independent, then for any scalars a4, ..., a,, €
F such that

QW1 + ... + AWy, = 0,

we can rewrite the previous equation as

awy + aiwse + ... + apw, =0
= a1v1 + ag(v1 +v2) ... + ap(v1 + ... +vy) =0
= a1v1 + agvy + asvs... + a1 + ...+ apv, =0
= (a1 + ... + ap)v1 + ... + apvy, =0
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By linear independence of vy, ...v,,, this implies

(al—l—...—i—am:O
as+ ...+ a,, =0

-1+ apy, =0

(am =0

We can easily solve this system of equation and get a; = as = ... = a,,, = 0. Thus,
Wi, ..., Wy, is linearly independent.

(<) Suppose that wy, ...w,, is linearly independent, then for any scalars ay, ..., a,, €
F such that
a1v1 + ... + U, = 0,

we can rewrite the previous equation as

aivy + avg + ... + ap v, =0
= ajw; + ag(wg — wy)... + ap(Wy — Wpp—1) =0
= a1Wi + AWy — AWq... + AWy — QpWypm—1 = 0
= (a1 — ag)wy + (ag — az)ws + ... + apw, =0

By linear independence of vy, ...v,,, this implies

6L1—CL2:0

a9 — Az = 0
am =10
We can easily solve this system of equation and get a; = as = ... = a,,, = 0. Thus,

V1, ..., U 18 linearly independent.

Exercise 15

Explain why there does not exist a list of six polynomials that is linearly indepen-
dent in Py(F).

Solution

We already know a list of size 5 that spans Py(F): 1, z, 2%, 2, x*. Hence, any list of
linearly independent polynomials must have a length smaller than 5. In particular,
a linearly independent list of 6 polynomials cannot exist in Py (F).

3

Exercise 16
Explain why no list of four polynomials spans P,(F).

Solution
We already know a linearly independent list of size 5 in Py(F): 1, z, 22, 23, 2%
Hence, any list of polynomials that spans P4(F) must have a length greater or equal
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to 5. In particular, a spanning list of 4 polynomials cannot exist in Py (F).

Exercise 17
Prove that V is infinite-dimensional if and only if there is a sequence vy, vy, ... of
vectors in V such that vy, ..., v, is linearly independent for every positive integer m.

Solution
( = ) Suppose that V' is infinite-dimensional, let’s define a sequence vy, v, ... of
vectors recursively as follows. First, V' cannot be the trivial vector space {0} because
the trivial vector space has a list of vectors that spans it: the list containing the
zero vector only. Hence, {0} is finite-dimensional so it cannot be equal to V. Thus,
define the vector v; € V' as any non-zero vector. Obviously, the list v; of length 1 is
linearly independent by Exercise 4.(a).

Recursively, suppose that we have a linearly independent list vy, vy, ..., vy of vec-
tors in V' for some natural number k. Since V is infinite-dimensional, then the given
list don’t span V. It follows that there exists a vector v,,; such that

Vk+1 % Span<vla ...,Uk)

Therefore, by Exercise 13, the list vy, v, ..., Uk, Uky1 18 linearly independent as well.
Now that we defined our sequence recursively, notice that by construction, for all
positive integer m, the list vy, ..., v,, is linearly independent.

( <= ) Suppose there is a sequence vy, vq, ... of vectors in V' such that vy, ..., v, is
linearly independent for every positive integer m. By contradiction, suppose that V'
is finite-dimensional, then there is a list wy, ..., wy that spans V for some positive
integer V. However, if we let m = N + 1, then our assumption implies that there
is a linearly independent list of length N + 1 in V. This is in contradiction with
Theorem 2.22 so V' must be infinite-dimensional.

Exercise 18
Prove that F*° is infinite-dimensional.

Solution

Consider the sequence vy, v, ... of sequences in F*> defined as follows: for all positive
integer k, define v, € F* as the sequence with all terms equal to 0, except the kth
term which is equal to 1. For all positive integer m, consider the list vy, ..., v,,.
Notice that by construction, for all scalars a4, ..., a,, € F, the linear combination

a1V1 + agVy + ... + AU,

is simply the sequence with terms (a1, as, ..., Gpm_1, am, 0,0,0, ...). Tt follows that this
linear combination is equal to the zero sequence if and only if all the coefficients a;
are zero. Thus, the list vy, ..., v, is linearly independent. Therefore, by Exercise 17,
F* is infinite-dimensional.

Exercise 19
Prove that the real vector space of all continuous real-valued functions on the inter-
val [0,1] is infinite-dimensional.
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Solution

Consider the sequence vy, v, ... of continuous functions on the interval [0,1] defined
by v, : & — a* for all positive integer k. Let m be a positive integer and consider the
list vy, ...,v,,. To show that this list is linearly independent, take arbitrary scalars
ay, ..., ay, € R such that

aivy + asvg + ... + ap U, =0
By definition of the v;’s, the previous equation implies that
a1 + asx® + ...+ apr™ =0

for all z € [0,1]. If we consider the function f : [0,1] — [0,1] defined by f(x) =
a1r + asr® + ... + a,z™, then f is differentiable on |0,1]. Thus, differentiating on
both sides gives us

a; + asx + ... + ap,x™ =0

for all x € [0,1]. By plugging-in x = 0, we get a; = 0. If we repeat this process m
times, we get a1 = ay = ... = a,, = 0. Thus, the list is linearly independent. There-
fore, by Exercise 17, the real vector space of all continuous real-valued functions on
the interval [0,1] is infinite-dimensional.

Exercise 20
Suppose po, 1, ---, Pm are polynomials in P,,(F) such that pi(2) = 0 for each k €
{0, ...,m}. Prove that pg, p1, ..., pm is not linearly independent in P, (F).

Solution
We already know a list of size m + 1 that spans P,,,(F): 1, z, 2%, ..., ™. Hence, any
list of linearly independent polynomials must have a length smaller than m + 1. By
contradiction, suppose that the given list pg, p1, ..., pm 1s linearly independent and
consider the constant polynomial p = 1. Notice that for all scalars ag, ..., a,, € F,
the new polynomial

aopo + a1p1 + ... + APm

also vanishes at x = 2. Hence, for any linear combination of the list pg, p1, ..., Pm,
the polynomial p must be different from this linear combination they don’t evaluate
to the same number at x = 2. It follows that

p ¢ Span(p07p17 7pm)

Thus, by Exercise 13, the list pg, ..., pm, p is linearly independent. However, this
list has length m + 2 so we get a contradiction. Therefore, pg, p1, ..., pn cannot be
linearly independent in P, (F).
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2B Bases

Exercise 1
Find all vector spaces that have exactly one basis.

Solution

Let V be a vector space over the field F that have exactly one basis. First, let’s
show that the basis must contain only one vector. To do so, suppose that the basis
is the following list: by, bs, ..., b, with n > 2. Consider the new list by, by + b, b3, ..., b,
where b, is replaced by b; 4+ by. Notice that this new list is also linearly independent
because for all scalars aq, ..., a, € F:

a1by + ag(by + b)) + agbs + ... + ayb, =0
= (o + ag)by + asby + asbs + ... + ab, =0
= a1 +ay;=0 and o;=0,1=2,...,n
— a;=0,i=1,...n

Moreover, notice that for all w € V, since by, bs,...,b, is a basis for V', then there
exist scalars aq, ..., a, € F such that

u = a1b1 + Clgbg -+ anbn
Hence,
u = (Cll — CLQ)bl + ag(bl + bg) =+ ...+ anbn c Span(bl, b1 + bg, ey bn)

It follows that the new list also spans V. Therefore, the new list is a basis. But
since V' has a unique basis, then the new list must be equal to the first one. In
particular, the vector b; 4+ by must be in the list by, b, ..., b, as well. Hence, there is
a i€ {1,...,n} such that by + by = b;. If i = 1, then we get by = 0, a contradiction
with the fact that bq,...,b, is linearly independent. Similarly, i = 2 would lead
to the same contradiction. Now, if ¢+ > 2, then we can rearrange the equation to
bi + by — b; = 0. Again, this is impossible since the b;’s are linearly independent.
Therefore, by contradiction, the unique basis for V' must contain at most 1 vector.
Now, we have two cases, either the basis is a list of length 0 or a list of length 1.
If the list has length 0, then V must be the trivial vector space {0}. Indeed, the
trivial vector space over any field has a unique basis, the list of length 0.

Suppose now that the basis for V is a list of length 1, call vy # 0 the unique vector
in the basis. Let o be a non-zero scalar and consider the list containg the vector
Qaug. Since nor « or vy is zero, then awvy is non-zero. Thus, this new list is linearly
independent. Moreover, for any v € V, since the list vy spans V, then there is a
A € F such that u = Avy. Thus:

u = —(awy) € span(avp)
a

It follows that the list awg is also a basis for V. By uniqueness, we must have
avy = vy. But since vy # 0:
Vg = Vg — Qg — Vg
= (a—1)yy=0
— a=1
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In conclusion, the only non-zero element in F is 1 so F must be the field containing
two elements.

From these results, we get that the only vector spaces with exactly one basis are
either the trivial vector spaces on any field, or the vectors spaces over the field with
two elements with a basis containing only one element.

Exercise 2
Verifiy all assertions in Example 2.27.

Solution

(2)

(c)

Denote by e; € F" the vector with all entries equal to zero except the ¢th entry
which is equal to 1. Let’s show that the list eq, ..., e, is a basis for F". First,
let’s show that it spans F". Take an arbitrary (aq,...,a,) € F" and notice
that

(o1, .y ) = aq(1,...,0) + ... + (0, ..., 1)
=161 + ... + e,

€ span(ey, ..., €,)
Hence, the list spans F". Moreover, for any scalars aq, ...,a, € F, we get

arer + ... + aze, = (0,...,0)
= a1(1,...,0) + ... + a,(0,....,1) = (0, ..., 0)
= (o,....,a,) = (0,...,0)
— o;=0foralli=1,...n

Therefore, the list eq, ..., e, is a basis for F".

Let’s show that the list (1,2),(3,5) is a basis of F2. To do so, notice that for
all (a,b) € F2, we have

(CZ, b) = (3b - 5&)(1, 2) + (2& - b)(?’a 5) € Sp&ﬂ((l, 2)7 (37 5))
so the list spans F2. Moreover, for all scalars o, 3 € F,

a(1,2) + B(3,5) = (0,0) = (a +38,2a +58) = (0,0)

a+38=0
20+ 56 =0

Thus, the list is linearly independent. Therefore, it is a basis for F2.

Let’s first prove that the list (1,2, —4), (7, =5, 6) is linearly independent in F3.
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Notice that for all scalars o, 8 € F:
a(l,2,—4)+ pB(7,-5,6) =0 = (a+75,2a — 55, —4a+68) =0
(0 +78=0
= 2a—-56=0
[ —4a+68=0
(0 +76=0
= (4a—-106=0

—

—

It follows that the list is linearly independent. Now, to show that it doesn’t
span F3, notice that the standard basis of F? is linearly independent list of
length 3. Hence, any spanning list of F? must have length bigger than or equal
to 3. Since the given list has length 2, then it cannot span F3.

First, recall from part (b) of this exercise that the list (1,2),(3,5) spans F>.
Hence, for all (a,b) € F?, there exist scalars «, 8 € F such that
(a,0) = (1,2) + 5(3,5)
= a(1,2) + 4(3,5) + 0(4,13)
€ span((1,2), (3,5), (4,13))
It follows that the list (1,2), (3,5), (4, 13) spans F2. However, it is not linearly
independent because the standard basis of F? is a spanning list of F? of length

2. Hence, any linearly independent list in F? must have length lesser than 2.
Since our given set has length 3, then it cannot be linearly independent.

Define the set
S={(z,z,y) €F’ 2,y € F}

and notice that it is a subspace of F®. Let’s show that the list (1,1,0), (0,0, 1)
is a basis of S. First, linear independence follows from the fact that for all
a,p e F:

a(1,1,0) + 5(0,0,1) =0 = (a,, ) =0

a=10
— Sa=0 = a=0=0
p=0

To show that the list spans S, let (z,x,y) be an arbitrary element of S where
x,y € F, then:

(x,z,y) = 2(1,1,0) +y(0,0,1) € span((1,1,0),(0,0,1))

Therefore, the given list is a basis of S.
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(f)

Define the set
S={(z,y,2) €EF’:2+y+2z=0}

and notice that it is a subspace of F3. Let’s show that the list (1, —1,0), (1,0, —1)
is a basis of S. First, linear independence follows from the fact that for all
a, e F:

a(1,-1,0)+ 8(1,0,-1) =0 = (a+ 8, —a,—B) =0

a+pB=0
= ¢ —a=0 — a=0=0
—3=0

To show that the list spans S, let (z,y, z) be an arbitrary element of S, then
we know that = + y + 2 = 0 which implies that 2 = —x — y. Hence:

(x:yv Z) = (_y)(17 _17 O) + ($ + y)(L Oa _1) € Span((L _17 O)a (17 07 _1>)
Therefore, the given list is a basis of S.

Consider the list 1, z, ..., 2™ as elements of P,,(F). Notice that for all scalars
o, Oy ...y 4y, € F we have

agt+az+...+a,2" =0 = «a; =0, 1=0,1,....m

Moreover, given a polynomial oy + a1z + ... + ;2™ € P, (F), it directly fol-
lows by the way it is written that it is a linear combination of the given list.
Therefore, it is a basis of P, (F).

Exercise 3

()

Let U be the subspace of R’ defined by
U = {(x1,79,73,74,25) € R” : 71 = 329 and x5 = Ta4}.

Find a basis of U.

(b) Extend the basis in (a) to a basis of RS.
(c) Find a subspace W of RS such that R> =U & W.
Solution
(a) Consider the list u; = (3,1,0,0,0),us = (0,0,7,1,0,),u3 = (0,0,0,0,1) and

let’s prove that it is a basis for U. First, for any scalars o, 3,7 € R:

auy + Pus +yuz =0 = (Ba,,76,6,7) =0
(30 =0

a=0

= (76=0

B=0

(7 =0

— a=0=7=0
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(c)

Moreover, for any (x1, xa, X3, x4, T5) € U, we now that 1 = 3z, and x3 = Txy.
Hence:
(Ilv T, X3, Ty, I5) - (3$2, Zo, 7$4, Ly, $5>
= XoUy + T4Uo + T5Usg

€ span(uyq, us, ug)
Therefore, it is a basis of U.

Asin the proof of 2.32, consider the list (3,1, 0,0, 0), (0,0,7,1,0,), (0,0,0,0, 1),
e1, €9, €3, €4, €5 Where e, ey, €3, €4, €5 is the standard basis for R®. This list
is spanning R® but it is not linearly independent. Hence, we can reduce it
to a basis as follows. First, remove e; because it is already in the list. Keep
the first three vectors since we know that they are linearly independent. The
vector e; cannot be written as a linear combination of the first three vectors
so keep it in the list. The vector e, can be written as

es = (3,1,0,0,0) — 3¢,

so we don’t keep it in the list. Similarly, es is not in the span of the first four
vectors in the list so we keep it, and e; can be written as

es = (0,0,7,1,0) — Tes

so we remove it. Hence, our original list can be extended to a basis by adding
the vectors e; and es.

As in the proof of 2.33, take W = span(ey, e3), then it follows that R®> = U®W.

Exercise 4

(2)

Let U be the subspace of C® defined by
U = {(21, 22,23, 24,25) € C°: 621 = 25 and 23 + 224 + 325 = 0}.
Find a basis of U.

(b) Extend the basis in (a) to a basis of C°.

(c) Find a subspace W of C® such that C° =U @& W.

Solution

(a) Consider the list u; = (1,6,0,0,0), us = (0,0,—2,1,0,), ug = (0,0,—3,0,1)

and let’s prove that it is a basis for U. First, for any scalars o, 5,7 € R:
auy + Pus +yuz =0 = (o, 6, =28 — 3v,6,7) =0

(0 =0

6a =0

=  —26-3y=0

5=0

(7 =0
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(c)

Moreover, for any (21, 22, 23, 24, 25) € U, we now that 6z; = z3 and 23 + 224 +
3z5 = 0. Hence:

(21, 22, 23, 24, 25) = (21,621, =224 — 325, 24, 25)
= z1U1 + Z4Ug + Z5Us3

€ span(uy, us, ug)
Therefore, it is a basis of U.

As in the proof of 2.32, consider the list uq, us, us, €1, €s, €3, €4, €5 where ey,
ea, €3, €4, €5 is the standard basis for C°. This list is spanning C® but it is not
linearly independent. Hence, we can reduce it to a basis as follows. First, keep
the first three vectors since we know that they are linearly independent. The
vector e; cannot be written as a linear combination of the first three vectors
so keep it in the list. The vector ey can be written as

1
€y = —(Ul — 61)

6

so we don’t keep it in the list. Similarly, e5 is not in the span of the first four
vectors in the list so we keep it, and e4 can be written as

€4 = U + 263
so we remove it. Again, we also remove e; because
es = us + 3es

Hence, our original list can be extended to a basis by adding the vectors e;
and es.

As in the proof of 2.33, take W = span(ey, e3), then it follows that C*> = U W.

Exercise 5
Suppose V is finite-dimensional and U, W are subspaces of V such that V = U+ W.
Prove that there exists a basis of V' consisting of vectors in U U W.

Solution

Since V is finite-dimensional, then U and W must be finite-dimensional as well by
Proposition 2.25. Hence, let uq, ..., u, be a list of vectors spanning U, and wy, ..., wy,
be a list of vectors spanning W. Consider the list uq, ..., u,, wy, ..., w,, of vectors in
U UW. Notice that for all v € V = U + W, there exist vectors u € U and w € W
such that v = v+ w. Moreover, since the lists u, ..., u, and wy, ..., w,, are spanning
their respective subspaces, then there exist scalars a,...,a, € F and Sy, ...,8, € F
such that

and

U= oquy + ... + a,u,

w = 51“11 + ...+ Bmwm

It follows that

v=aou + ... + au, + 1w + ...+ B,
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so the list uq, ..., u,, wy, ..., w,, spans V. By Proposition 2.30, this list must contain
a sublist that is a basis of V. Thus, such a sublist is indeed a basis of V' consisting
of vectors in U U W by construction.

Exercise 6
Prove or give a counterexample: If pg, p1, p2, p3 is a list in P3(F) such that none of
the polynomials pg, p1, p2, ps has degree 2, then pg, p1, p2, ps is not a basis of P3(F).

Solution
Consider the following list of polynomials in Ps3(F):

po(z) =1 pe(z) =14+ 2% + 23
p(z) =2  ps3(z)=2°

and notice that it contains no polynomials of degree 2. Let’s show that it is a basis
for P3(F). To do so, consider the fact that 1,z, 2% € span(pg, p1, p2, p3). Moreover,

2° = py — po — p1 — p3 € span(po, p1, P2, P3)

Hence, span(pg, p1, p2, p3) is a subspace that contains the standard basis of Ps(F).
It follows that pg, p1, p2, ps spans Ps(F). To prove the linear independence, simply
take scalars ag, ay, as, a3 € F and notice that

agpo + a1p1 + asps + azps =0 = ag+a1x +ax(l +x + 2+ x3) + a3x3 =0
= (ao + ay) + (a1 + a2)z + apz® + (az + az)x® = 0

ap +az =0
a =0
. 1+ az
CLQIO
CL3+CL2:0

= ag=a1=ay=a3 =0

Therefore, pg, p1, P2, p3 is a basis of P3(F) even if it contains no polynomials of de-
gree 2.

Exercise 7
Suppose vy, vy, U3, V4 is a basis of V. Prove that

U1 + Vg, Uy + V3, U3 + Vg, Uy
is also a basis of V.

Solution
First, let’s prove that it is linearly independent. Take scalars aq,as,as,aqs € F, by
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linear independence of vy, vq, v3, V4:

ai(v1 + v2) + as(ve + v3) + ag(vs + v4) + agvy =0
= a1V + (a1 —+ CLQ)’UQ + (CLQ —+ CL3>’03 + (a3 —+ CL4>’U4 =0

a1:0

CL1—|—CL2:O
—

a2+a3:O

a3+a4:O

To prove that it spans V, take v € V. Since vy, vo, v3,v4 spans V', then there exist
scalars aq, as, az, as € F such that

U = A1V1 + AV + A3V3 + A4V4

But since
v1 = (V1 +v9) — (Vg +v3) + (V3 + vg) — vy
v = (v +v3) — (V3 +vy) + 14
and
v3 = (v3 + vyg) — V4,
then

U = A1V + A2V + A3V3 + A4y
= a1[(v1 + v2) — (v2 + v3) + (U3 + Va) — V4]
+ as[(vy + v3) — (V3 + v4) + v4]
+ az[(vs + va) — va] + aqvy
= a1 (v +v2) + (ag — a1)(vy + v3)
+ (as — ags + a1)(vs + v4) + (ag — az + az — ay)vy

which proves that it spans V. Therefore, the new list of vectors is also a basis of V.

Exercise 8
Prove or give a counterexample: If vy, v9,v3,v4 is a basis of V' and U is a subspace
of V' such that vy,ve € U and v3 ¢ U and vy ¢ U, then vy, vs is a basis of U.

Solution
Consider the following counterexample: Take V = R*, vy, vs, v3, v4 be the standard
basis and define

U = span(vy, v9, (0,0,1, 1))

Obviously, U is a subspace of V' that contains v; and vy. Moreover, if v3 € U, then
there would be scalars a, b, c € R such that

(0,0,1,0) = (a,b,¢,¢) = ¢=1and ¢ =0,

a contradiction that shows that vz ¢ U. Using a similar argument, vy ¢ U as well.
However, vy, vy is not a basis of U because it doesn’t span it. Take for example
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(0,0,1,1) € U which is not in the span of vy, vs.

Exercise 9
Suppose vy, ..., vy, is a list of vectors in V. For k € {1,...,m}, let

Wi = V1 + ... + V.

Show that vy, ...,v,, is a basis of V if and only if wy, ..., w,, is a basis of V.

Solution

Suppose that v, ..., v, is a basis, then it is linearly independent. By Section 2A Ex-
ercise 14, wy, ..., w,, must be linearly independent as well. Moreover, since vy, ..., v,,
is a basis, then span(vy,...,v,,) = V. Again, using Section 2A Exercise 3, we have
that span(wi,...,w,) = span(vy,...,v,,) = V. It follows that wy, ..., w,, spans V.
Therefore, wy, ..., w,, is a basis of V. All the arguments presented here prove the
reverse implication as well.

Exercise 10
Suppose U and W are subspace of V such that V = U @& W. Suppose also that
Ui, ..., Uy 18 a basis of U and wy, ..., w, is basis of W. Prove that

Upy eoey Uy W1y oovy Wiy

is a basis of V.

Solution
First, let’s prove that uy, ..., t,,, w1, ..., w,, spans V. Take an arbitrary v € V, then
there exist vectors u € U and w € W such that v = v+ w. Since uy, ..., u,, is a basis
of U and wy, ..., w, is basis of W, then there exist scalars aq, ..., am, 81, ..., Bp € F
such that

U= 0U; + ... + QU

and
w = Blwl + ...+ 6nwn

It follows that
V= QqUy F et Qi + Srwr + .+ Buwy, € Span(uy, .., Uy, W1, .oy W)

which proves that the list spans V. Now, to prove the inear independence, take
arbitrary scalars oy, ..., u, 01, ..., B € F and recall that u + w =0 = u=w =0
for all w € U and w € W. Hence,

a1y + ... + apy, + frwy + ..o+ Brw, =0

implies
ajul + ...+ oty = 0
61w1 + ...+ ﬁnwn =0

But since the lists uq, ..., u,, and wy, ..., w, are linearly independent, then we get

g=..=ap=h=...=06,=0
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Therefore, the list uy, ..., U, wy, ..., w,, is a basis of V.

Exercise 11
Suppose V is a real vector space. Show that if vq,...,v, is a basis of V' (as a real
vector space), then vy, ..., v, is also a basis of the complexification Vg (as a complex
vector space).

Solution
First, let’s show that vy, ..., v, spans V. To do so, let u + 1w € Vi be an arbitrary
vector. Since u,v € V, then there exist scalars ayq, ..., ay, 81, ..., Bn € R such that

U= oV + ... + a,vu,
and

v=[1v1+ ... + Buv,.
It follows that

U410 = vy + ... + @uv, i1 + ...+ B0,
€ span(vy, ..., Uy)

Thus, vy, ..., v, spans V. To prove the linear independence, let ay+i034, ..., a,+i5, €
C be complex scalars and notice that

(a1 +iB1)vr + ... + (a, +i8p)v, =0
— |1 + ... + auuy] F i1 + o+ Buun] =0
a1 + ... + ayv, =0
=
ﬁlvl + ...+ ﬁnvn =0
— agy=..=ap,==..=05,=0
eSS Oél+iﬁ1 ::Oén—FZﬂn:O

Thus, the vectors vy, ..., v, are linearly independent in V. Therefore, it is a basis
of Vc.
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2C Dimension

Exercise 1
Show that the subspaces of R? are precisely {0}, all lines in R? containing the origin,
and R2.

Solution

Let V be a subspace of R?. Since R? has dimension 2, then 0 < dimV < 2 by
Proposition 2.37. If V has dimension 0, then its basis must be the empty set. In
that case, V = span(@) = {0}. If V has dimension 1, then its basis must contain a
single non-zero vector. It follows that

V =span(u) = {\u: A € R}.

But notice that \u with A € R is simply the equation of a line with direction vector
u passing through the origin (take A = 0), hence, V' is a line passing through the
origin. Finaly, if V has dimension 2, then by Proposition 2.39, V = R?. Therefore,
since V was an arbitrary subspace, then subspaces of R? are {0}, all lines in R?
containing the origin, and R?2.

To prove that the subspaces of R? are precisely these subsets, let’s show that any
of these subsets are subspaces. Trivialy, {0} and R? are indeed subspaces of R?.
Now, let L be a line in R? passing through the origin, then L must have a direction
vector u. Moreover, if L passes through the point P, then we can write

L={P+ X u:\}
Since L contains the origin, then we can take P = 0 which implies that
L ={\u: A} =span(u)

which is a subspace of R?. Therefore, the subspaces of R? are precisely {0}, all lines
in R? containing the origin, and R2.

Exercise 2
Show that the subspaces of R? are precisely {0}, all lines in R? containing the origin,
all planes in R? containing the origin, and R?.

Solution

Let V be a subspace of R3. Since R? has dimension 3, then 0 < dimV < 3 by
Proposition 2.37. If V has dimension 0, then its basis must be the empty set. In
that case, V = span(@) = {0}. If V has dimension 1, then its basis must contain a
single non-zero vector. It follows that

V =span(u) = {\u: A € R}.

But notice that \u with A € R is simply the equation of a line with direction vector
u passing through the origin (take A = 0), hence, V' is a line passing through the
origin. If V' has dimension 2, then there are two linearly independent vectors wuy, uso
such that

V = span(uy,us) = {au; + Pus : o, f € R}
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But notice that au; + Sus is simply the equation of a plane containing the origin
described by the two vectors u; and us. Hence, V' is a plane containing the origin.
Finaly, if V has dimension 3, then by Proposition 2.39, V = R3. Thus, subspaces
of R? are {0}, lines and planes containing the origin and R?.

To prove that the subspaces of R? are precisely these subsets, let’s show that any
of these subsets are subspaces. Trivialy, {0} and R? are indeed subspaces of R?.
Now, let L be a line in R? passing through the origin, then L must have a direction
vector u. Moreover, if L passes through the point P, then we can write

L={P+Xu:\}
Since L contains the origin, then we can take P = 0 which implies that
L ={\u:\} =span(u)

which is a subspace of R?. Similarly, if P is a plane in R? containing the origin, then
it must contain two linearly independent vectors uy, us that describe the orientation
of the plane. Moreover, if A is a point on the plan P, then the vectors in the P are
described by the equation

A+ auy + Pus

Since P contains the origin, then take A = 0 to get:
P = {auy + Pus : o, f € R} = span(uy, us)
It follows that P is a subspace of R3. Therefore, the subspaces of R? are precisely

{0}, all lines in R? containing the origin, and R?.

Exercise 3
(a) Let U = {p € P4(F) : p(6) = 0}. Find a basis of U.
(b) Extend the basis in (a) to a basis of Py(F).
(c) Find a subspace W of P4(F) such that Py(F)=U & W.

Solution

(a) Consider the list p1, p2, p3, ps defined by

pi(z)=2—-06 p2($):l'2—633

p3(x) = z° — 62 pa(z) = zt — 62°
This list spans U because given any p € U, then p is a polynomial of degree

four that has 6 as a root. Hence, we can factorize x — 6 such that p(z) =
(x — 6)(az® + ba® + cx + d) for some a,b,c,d € F. Thus:

p(z) = (x — 6)(ax® + ba® + cx + d)
= a(z* — 62°) + b(z® — 62°) + c(z® — 62) + d(z — 6)
= aps(x) + bps(x) + cp2(2) + dp1(x)
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which shows that the list spans U. To show that it is linearly independent,
take scalars a, b, c,d € F and notice that

aps(x) + bps(z) + cpa(x) + dp(x) =0
= a(z* — 62°) + b(2® — 62%) + c(2* — 62) + d(z — 6) =0
— ar* + (b—6a)z® + (c — 6b)x* + (d — 6¢)x + (—6d) = 0

(=0
b—6a=0
= qc—6b=0
d—6c=0
(—6d=0

— a=b=c=d=0
Therefore, py, pa, p3, ps is a basis of U.

Since the list p1, p2, p3, p4 is linearly independent in U, then it must be linearly
independent in P, (F). Hence, we can extend it to a basis of P4(F). To do so,
we only need to add one single polynomial to our list because we already know
a basis of P4(F) of size 5: 1, x, 22, 23, 2*. It is easy to notice that the constant
polynomial 1 cannot be written as a linear combination of py, ps, p3, p4 because
for any scalars a,b,c,d € F:

apa(z) + bps(x) + cpa () + dpi(z) = 1
— a(z* — 62°) + b(z® — 62%) + c(2® — 62) +d(z —6) =1
= ar' + (b—6a)z* + (c — 6b)x* + (d — 6¢)x + (—6d) = 1

(=0
b—6a=0
= qc—60=0
d—6c=0
(—6d =1

— a:b:c:d:0andd—é

A contradiction. Therefore, by Section 2A Exercise 13, the list 1, p1, p2, p3, P4
is linearly independent. Since the list has length 5, then it must be a basis by
Proposition 2.38.

Since 1, p1, pa, P3, P4 is a basis of P4(F), then we can easily get
Pi(F)=UdF

where F' denotes the set of constant polynomials.

Exercise 4

(2)

Let U = {p € P4(F) : p"(6) = 0}. Find a basis of U.
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(b) Extend the basis in (a) to a basis of Py(F).
(c) Find a subspace W of P4(F) such that Py(F)=U & W.

Solution

(a) Consider the list p1, p2, p3, p4 defined by

p(z) =1 pa(z) =2
1 1
ps(x) = éxs — 32° pa(z) = Ex4 —z?

To show that it is linearly independent, take scalars a,b,c,d € F and notice
that

aps(x) + bps(z) + cpa(z) + dp1(x) =0

I 3 14 2 _
a(ux x)+b(6x 32° | +cx+d=0

I

b
— att(-—a 2?4+ (=3b)x* +cx +d =0
12 6
((Z
13 =0
b _
E—CL—O
— 4§ —3b=0
c=0
d=0
\

= a=b=c=d=0

Therefore, p1, p2, p3, p4 is linearly independent in U. To prove that it is a basis,
consider its span. If py, ps, p3, p4 don’t span U, then we must be able to extend
it to a basis of U. However, since dimU < dim P4(F) = 5, then we can add
only one polynomial. In this case, U has a basis of length 5 which implies that
U = P4(F) by Proposition 2.39, a contradiction since z? ¢ U. It follows that
the list p1, p2, p3, p4+ must span U. Therefore, it is a basis of U.

(b) Since the list py, pa, p3, p4 is linearly independent in U, then it must be linearly
independent in P4(F). Hence, we can extend it to a basis of Py(F). To do
so, we only need to add one single polynomial to our list because we already
know a basis of Py(F) of size 5: 1, z, 2%, 23, 2%, It is easy to notice that
the polynomial 2% cannot be written as a linear combination of pi, ps, ps, pa
since 2 ¢ U. Therefore, by Section 2A Exercise 13, the list 2%, p1, pa, p3, ps is
linearly independent. Since the list has length 5, then it must be a basis by
Proposition 2.38.

(c) Since 22, p1, pa, p3, pa is a basis of Py(F), then we can easily get
Py(F) = U @ Fa?

where F2? denotes the span of the polynomial z2.



CHAPTER 2. FINITE-DIMENSIONAL VECTOR SPACES 57

Exercise 5

(2)
(b)
(c)

Let U = {p € P4(F) : p(2) = p(5)}. Find a basis of U.
Extend the basis in (a) to a basis of Py(F).

Find a subspace W of Py(F) such that P,(F)=U & W.

Solution

()

Consider the list py, p2, p3, p4 defined by

pi(z) =1 pa(z) = (x = 2)(x — 5)
ps(z) = x(z — 2)(x — 5) pa(z) = 2*(z — 2)(x — 5)

To show that it is linearly independent, take scalars a,b,c,d € F and notice
that

apa(z) + bps(x) + cpa(x) + dpi(z) = 0
= a(z* — 72° + 102%) + b(2® — 72 + 102) + c(z® — Tz +10) +d = 0
= az' + (b—Ta)z’ + (¢ — Tb+ 10a)z® + (10b — Tc)z + (10c + d) = 0
(=0
b—"Ta=0
= qc—7b+10a =0
106 —T7c=0
([ 10c+d =0
— a=b=c=d=0

Therefore, p1, pa, p3, p4 is linearly independent in U. To prove that it is a basis,
consider its span. If p1, pa, p3, p4 don’t span U, then we must be able to extend
it to a basis of U. However, since dimU < dim P4(F) = 5, then we can add
only one polynomial. In this case, U has a basis of length 5 which implies that
U = P4(F) by Proposition 2.39, a contradiction since z? ¢ U. It follows that
the list p1, po, p3, p4 must span U. Therefore, it is a basis of U.

Since the list p1, p2, p3, p4 is linearly independent in U, then it must be linearly
independent in P,(F). Hence, we can extend it to a basis of Py(F). To do
so, we only need to add one single polynomial to our list because we already
know a basis of Py(F) of size 5: 1, z, 2%, 23, 2%, Tt is easy to notice that
the polynomial 2% cannot be written as a linear combination of py, ps, ps, Pa
since 22 ¢ U. Therefore, by Section 2A Exercise 13, the list 22, p1, p2, p3, P4 is
linearly independent. Since the list has length 5, then it must be a basis by

Proposition 2.38.
Since 2, p1, p2, p3, pa is a basis of Py(F), then we can easily get
Py(F) = U @ Fa?

where F2? denotes the span of the polynomial z2.
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Exercise 6
(a) Let U = {p € Ps(F) : p(2) = p(5) = p(6)}. Find a basis of U.
(b) Extend the basis in (a) to a basis of Py(F).
(c) Find a subspace W of P4(F) such that Py(F)=U & W.

Solution

(a) Consider the list pq, p2, ps defined by

To show that it is linearly independent, take scalars a, b, c € F and notice that

aps(x) + bpz(z) + cpr(x) =0

— a(z* — 132% + 5227 — 60x) + b(2* — 132% + 522 — 60) +c =0
— azr* + (b—13a)2® + (52a — 13b)2* + (52b — 60a)z + (c — 60b) = 0
(0 =0

b—13a =0
= (52a—13b=0
520 — 60a = 0
c—60b=0
— a=b=c=0

Therefore, py, pa, p3 is linearly independent in U. Let’s now show that it spans
U. To do so, let p be an arbitrary polynomial in U, then p — p(2) must have
roots at x = 2, 5,6 which means that

p(x) = p(2) = (z = 2)(x = 5)(z — 6)q(x)

where ¢ is a polynomial of degree 1. Thus, there exist scalars a,b € F such
that ¢(z) = ax 4+ b. Thus,

p(z) = (z = 2)(z = 5)(z — 6)q(z) + p(2)
= (x—2)(x = 5)(z —6)(ax + b) + p(2)
=az(x —2)(x —5)(z —6) + b(z — 2)(z — 5)(x — 6) + p(2)
= ap3(z) + bpz(x) + p(2)p1(2)
€ span(p1, p2, P3)

Therefore, pq, po, p3 is a basis for U.

(b) Since the list py, ps, p3 is linearly independent in U, then it must be linearly
independent in P4(F). Hence, we can extend it to a basis of Py(F). To do
so, we need to add two polynomials to our list because dim Py (F) = 5. It is
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easy to see that the polynomial x cannot be written as a linear combination of
p1, P2, p3 since x ¢ U. Therefore, by Section 2A Exercise 13, the list x, p1, p2, p3
is linearly independent. Let’s add one last polynomial to our list to make it
a basis of U. Suppose that z? € span(z, p1, p2,p3), then there exist scalars
a,b,c,d € F such that

22 =ax + bp1(z) + cpo(z) + dps(z)

But notice that bp; + cps + dps € U so just define it as py, then we have

2? = az + pu(x)

where py(2) = py(5) = py(6). This, if we plug-in x = 2,5,6, we get the
following system of equations:

4 =2a+py(2)
25 = 5a + py(2)
36 = 6a + p(2)
21 = 3a

11=a

A contradiction that shows that 22 is not in the span of x, pi, p2, p3. Therefore,
by Section 2A Exercise 13, the list z, 22, py, pa, ps is linearly independent. Since
the list has length 5, then it must be a basis by Proposition 2.38.

(c) Since x, 2% py1, p2, p3 is a basis of Py(F), then we can easily get

Pi(F) = U & span(, 2%)

Exercise 7
(a) Let U = {p € Ps(F): f_llp = 0}. Find a basis of U.
(b) Extend the basis in (a) to a basis of Py(F).
(c) Find a subspace W of P4(F) such that Py(F)=U & W.

Solution

(a) Consider the list p1, p2, p3, ps defined by
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To show that it is linearly independent, take scalars a,b,c,d € F and notice
that

apy(x) + bps(z) + cpa(x) + dpr(z) =0

1 1
— a(x4—g>+bx3+c($2—§>+d:c:0

- ax4+bx3+cx2+dx—(§+§) =0

/

=0
c=d=0

Ve

ale Q0 6O O 2
I
wae © © O o

=+

= a

Therefore, p1, pa, p3, p4 is linearly independent in U. To prove that it is a basis,
consider its span. If py, ps, p3, p4 don’t span U, then we must be able to extend
it to a basis of U. However, since dimU < dim P,(F) = 5, then we can add
only one polynomial. In this case, U has a basis of length 5 which implies that
U = P4(F) by Proposition 2.39, a contradiction since 1 ¢ U. Tt follows that
the list pq, po, p3, p4 must span U. Therefore, it is a basis of U.

(b) Since the list py, pa, p3, p4 is linearly independent in U, then it must be linearly
independent in P, (F). Hence, we can extend it to a basis of P,(F). To do so,
we only need to add one single polynomial to our list because dim Py(F) =
5. It is easy to notice that the polynomial 1 cannot be written as a linear
combination of pi, ps, ps, ps since 1 ¢ U. Therefore, by Section 2A Exercise
13, the list 1, py, p2, p3, ps is linearly independent. Since the list has length 5,
then it must be a basis by Proposition 2.38.

(c) Since 1, p1,p2, p3, psa is a basis of Py(F), then we can easily get
Pu(F)=UadF
where F denotes the subspace of constant polynomials.
Exercise 8
Suppose v1, ..., v, is linearly independent in V' and w € V. Prove that
dim span(v; + w, ..., vy, + w) > m — 1.

Solution
Consider the list v; + w, ..., v, + w of length m and suppose by contradiction that

dimspan(vy + w, ..., v +w) =d < m — 2,
then there exists a linearly independent list of vectors uq, ..., uq in V such that

span(vy + w, ..., Uy, + w) = span(uy, ..., Ug).
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For each i € {1,...,n}, the previous equation implies that
V; +w = aug + ... + agug,
which itself implies that
v = quy + ... + agug — w € span(ug, ..., Ug, W).
Since it holds for all ¢ € {1,...,n}, then
{v1, .., U} Cspan(uy, ..., ug, w) = span(vy, ..., vy,) < span(ug, ..., g, w).

Since subspaces have a dimensions less than the vector space they are contained in
(Proposition 2.37), then

dim span(vy, ..., vy,) < dimspan(ug, ..., ug, w). (1)
The v;’s are linearly independent so they form a basis for their span. It follows that
dim span(vy, ..., v,) = m. (2)

Moreover, the list uy, ..., ug, w is spanning its span (obviously), so it must contain a
basis. Since the list has length d 4+ 1, then the dimension of the span must be less
than d + 1. But since d < m — 2, then

dim span(uy, ..., ug, w) < m — 1. (3)
Combining equations (1), (2) and (3) gives us
m<m-—1
which is clearly a contradiction. Therefore,

dimspan(vy + w, ..., v, + w) > m — 1.

Exercise 9
Suppose m is a positive integer and pg, p1, ..., pm € P(F) are such that each p; has
degree k. Prove that pg, p1, ..., pm is a basis of P, (F).

Solution

Since the list pg, p1, ..., pm has length m + 1 and we already know that dim P,,(F) =
m + 1, then it suffices to show that the list is linearly independent by Proposition
2.38. Let’s prove by induction on m that any list pg, p1, ..., pn such that each py has
degree k£ must be linearly independent.

For the base case, take m = 0 and consider the list py where py is a polynomial of
degree 0. Hence pg must be a nonzero constant polynomial (since the zero polynomial
has degree —oo). But we know from Section 2A Exercise 4(a) that the list containing
po only must be linearly independent since it is nonzero. This proves that the
statement holds for m = 0.

Suppose now that it holds for an integer m > 0 and consider the list pg, p1, ..., Pm1
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such that each py has degree k. By our assumption, we know that the list pg, p1, ..., Pm
is linearly independent. If we take arbitrary scalars ay, ..., a1 satisfying

aopo + a1pr + . 1Pm1 = 0,

then notice that a,,,; must be equal to zero since p,,.1 is only polynomial in the
linear combination containing a ™! term. Thus, we get that

aoppo + a1p1 + ...Qpm = 0.

But by linear independence of the p;’s, we know that oy = ... = a,,, = 0. It follows
that the new list is linearly independent as well. Therefore, by induction, all such
lists must be linearly independent and hence, a basis for P, (F).

Exercise 10
Suppose m is a positive integer. For 0 < k < m, let

pr(z) = (1 — )™ F.
Show that py, ..., pm, is a basis of P, (F).

Solution

Since the list pg, p1, ..., pm has length m + 1 and we already know that dim P,,(F) =
m + 1, then it suffices to show that the list is linearly independent by Proposition
2.38.

Let ag, aq, ..., ., € F be scalars such that

agpo + a1pr + ... + QP = 0.

The polynomial on the left hand side is equal to zero, this implies that the coefficients
in front of each monomial of the form 2* are zero. Given a k between 0 and m,
notice that the polynomial p; can be written as

pu(a) = o* mZ IR o (e SV

i=k

using the Binomial Formula. It follows that the lowest degree term in pj is z*.
Therefore, in the list pg, ..., pm, Po is the only polynomial containing a constant
term. Hence, the constant term in the polynomial agpy + ayp1 + ... + QP 1S .

It follows that ag = 0. Thus, we now have the equation
a1pr + ... + ampm =0,

In the list py, ..., pm, the polynomial p; is the only polynomial containing the term
x!. Thus, the coefficient in front of the term 2! in the polynomial aqpi + ... +mpm, is
aq. It follows that oy = 0. If we continue in this manner, we can prove by induction
that all the «o;’s are zero. Therefore, the list is linearly independent and hence, a
basis of P,,(F).

Exercise 11
Suppose U and V are both four-dimensional subspaces of C°. Prove that there exist
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two vectors in U N W such that neither of these vectors is a scalar multiple of the
other.

Solution
By Proposition 2.43, we know that

dim(U 4+ W) =dimU + dim W — dim(U N W) (1)

Since U + W <V, then by Proposition 2.37, dim(U + W) < dimV = 6. Thus, if
we substitute this inequality and the known values into equation (1), we get:

6>4+4—dim(UnNW),
which can be rearranged into
dim(UNW) > 2.

Thus, if we denote by d the dimension of U N W, then there exists a basis v, ..., vg
of UNW. Since it is a basis and d > 2, then we can take the vectors v{,vo € UNW
and assert that they are linearly independent. Therefore, there exist two vectors in
U NW such that neither of these vectors is a scalar multiple of the other (by linear
independence).

Exercise 12
Suppose that U and V are subspaces of R® such that dimU = 3, dim W = 5, and
U+ W =RS8. Prove that RE=U ¢ WV.

Solution

Since we already know that U + W = R¥®, it suffices to prove that U N W = {0}.
To do so, notice that U + W = R?® implies dim(U + W) = 8. Using the formula in
Proposition 2.43, we get

dimU +dimV — dim(U N W) = 8.
If we plug-in the known values, we get
444 —dim(UNW) =38,
which can be rearranged into
dim(U N W) = 0.

But the only zero-dimensional vector space is the trivial vector space {0}. Hence,
UNW = {0}. Therefore, R®=U @ W.

Exercise 13
Suppose U and W are both five-dimensional subspaces of R?. Prove that U N W #

{0}

Solution
Since U + W < RY, then by Proposition 2.37, dim(U + W) < dimR? = 9. Using
the formula in Proposition 2.43, we get

dimU +dimV —dim(U N W) < 9.
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If we plug-in the known values, we get
54+5—dim(UNW) <9,
which can be rearranged into
dim(UNW) > 1.
Therefore, U N W cannot be {0} since otherwise, its dimension would be 0.

Exercise 14

Suppose V is a ten-dimensional vector space and Vi, Vs, V3 are subspaces of V' with
dimV} = dim V, = dim V3 = 7. Prove that V; NV, N V3 # {0}.

Solution
First, consider the subspace V3 N'V5,. Since Vi + Vo < V| then dim(V; +V5) < 10. It
follows that

dim(V; N Va) = dim V4 + dim Vs — dim(Vy + V5) > 7+ 7 — 10 = 4.

Now, consider the subspace V; NV, N V3 as the intersection between Vi N V5 and V.
Since (V1 N Va) + V5 <V, then dim((V; N'V,) + V3) < 10. It follows that

dim(Vy N Vo N V3) = dim(Vy N V,) 4+ dim V3 — dim((Vy N'V;) + V3)
>447-10
=1

Thus, V1 N Vo N V3 cannot be {0} since otherwise, its dimension would be 0.

Exercise 15
Suppose V is finite-dimensional and Vi, V5, V3 are subspaces of V' with dim V) +
dim V5 + dim V3 > 2dim V. Prove that V3 NV, N V3 # {0}.

Solution
First, consider the subspace V) NV4. Since Vi +V, <V, then dim(V; +V3) < dim V.
It follows that

dim(V; NV3) = dim V; 4+ dim Vo — dim(V; + V5) > dim V; + dim Vo — dim V.

Now, consider the subspace V; NV, N V3 as the intersection between V3 N V5 and V.
Since (V1 NV3) + V3 <V, then dim((Vy N'V,) + V3) < dim V. Tt follows that

dim(V; N Vo NV3) = dim(Vi N Vy) + dim Vs — dim((Vy N Va) + V3)
> dim V; + dim V5 — dim(V; + V3) + dim V3 — dim V/
>dimV; +dimV, +dim Vs —dimV —dimV
>2dimV —2dim V'
=0

Thus, V; NV, N V3 cannot be {0} since otherwise, its dimension would be 0.
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Exercise 16

Suppose V is finite-dimensional and U is a subspace of V with U # V. Let n = dim V'
and m = dimU. Prove that there exist n — m subspaces of V', each of dimension
n — 1, whose intersection equals U.

Solution
Let uq, ..., u,, be a basis of U and extend it to a basis

ULy eeey Uy U1y ooey Un—m

of V. For each i € {1,...,n —m}, define the subspace V; of V' as the span of the list
ULy wvey Upy, U1y oons U €xcept the vector v;. Hence, V; is the span of n — 1 linearly
independent vectors so dim V; = n— 1. Consider now the intersection V,N...NV,,_,,.
Since each V; is the span of a list containing a basis of U, then U is a subspace of
all the V;’s. It follows that

n—m
U< (v
i=1
Let v be an arbitrary vector in ()._," V;, since (;_;" V; <V, then
UV =0qU; + ... + QU + B+ ... + BuemUn,

for some scalars ay, ..., @, B1, ..., Bn—m € F. Let j € {1,...,n}, since v € ;[ Vi,
then v € Vj in particular. Since Vj is the span of the ;s and v;’s except v;, then V
contains

Vo = aq Uy + ... + QU + BU1 + oo+ BuemUn,,

where 3; = 0. Hence, V; is a subspace that contains both v and vy, so it follows that
5j?}j:1}—1}0€‘/}.

If B; is non-zero, then v; € V;. But since V; already contains all the vectors in
the basis of V' except v;, then V; contains a basis of V. It follows that V <V} so
n < n—1, a contradiction. Therefore, 3; = 0. Since it holds for all j € {1,...,n—m},
then all the possibly non-zero coefficients in the linear combination of v are the
coeflicients in front of the u;’s. Hence:

v =aquy + ... + puym +0+ ... +0 € span(uy, ..., uy) = U.

Since it holds for all v € N2V}, then N;2"V; < U. Therefore, U = N-/"V;, which
proves that there exist n —m subspaces of V', each of dimension n — 1, whose inter-
section equals U.

Exercise 17
Suppose that V7, ..., V,, are finite-dimensional subspaces of V. Prove that V;+---+V,,
is finite-dimensional and

dim(Vi + -+ V,,) <dim Vi + - - + dim V,,,.

Solution
Let i € {1,...,m} and define d; as the dimension of V;. Since V; is finite-dimensional,
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then it has a finite basis vﬁi), e vé?. Consider now the list which merges all of these
bases:

1 1 2 2 m m
o, o o u@, ™

m

This new list has length d; + dy + ... + d,,, < 0co. Moreover, it is easy to see that it
is spanning V; + ...V}, since for all u € V; + ...V}, we can write u as uy + ... + up,
where u; € V; for all i € {1,...,m}. Hence, for all i € {1,...,n}, since vgl) ...,v((j) is a

)

7

basis of V;, then there exist scalars oz(li), e afjj € F such that

o0

7

U; = agi)vgi) + ...+ affi)

It follows that

u = agl)vil) + ...+ a((ill)vg) + ...+ aﬁm)zém’ + ...+ afiz)vc(l::)

which proves that the list

v%l), ...,vc(l?,vf), ...,vc(é), ...,v%m), ...,vém)
spans Vi + ---+ V,,. Hence, V; + ...+ V,, is finite dimensional since it contains a
finite spanning list. Moreover, any spanning list must contain a basis. It follows
that there exists a sublist of the one presented that it a basis of V; +---+V,,. This
list has a length less than or equal to the length of the presented list (since it is a
sublist) which is equal to d; + ... + d,,. But since it is a basis, then it has length
dim(Vy + - -+ 4+ V,,,). Therefore:

dm(Vi+---4+V,) <di+---+d, =dim V] +--- +dim V,,.

Exercise 18
Suppose V is finite-dimensional, with dimV' = n > 1. Prove that there exist one-
dimensional subspaces Vi, ..., V,, of V such that

V=Vie& &V,

Solution

Let vy, ...,v, be a basis of V' and for each i € {1,...,n}, define the subspace V; as
the span of the vector v;. Let’s prove that V =V, @& --- @ V,,. First, it is clear that
Vi+---4+V, <V. Moreover, for all v € V, since v, ..., v, is a basis of V, there exist
scalars aq, ..., a,, € F such that

V=1V + ... + @, Up,.

For all i € {1,...,n}, the term oyv; € V. Tt follows that v € V| +---+V,,. Therefore,
V =Vi+---4V,. To prove that the sum is direct, it suffices to show that zero has a
unique representation as a sum of elements in the V;’s (Proposition 1.45). But this
follows from the fact the v;’s are linearly independent since it is a basis. Therefore,

V=Vo- oV,
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Exercise 19

Explain why you might guess, motivated by analogy with the formula for the number
of elements in the union of three finite sets, that if Vi, V5, V5 are subspaces of a finite-
dimensional vector space, then

dim(Vi+Va + Vi) =
=dim V; + dim V5 + dim V3
— dim(Vy N'V3) — dim(V1 N V3) — dim(V N V3)
+ dim(V; N Vo N V).

Then either prove the formula above or give a counterexample.

Solution
Given three finite sets S1, S5, S3, we can easily derive the following formula for the
cardinality of the union of the three sets:

#(S1U Sy U S3) = #(S1 U Sa) + #55 — #((S1U S2) N S3)
= #S51 + #52 — #(S1 N Sa) + #53 — #((S1 N S3) U (51N S3))
= F#S1 + #So + #S55 — #(51 N Sy)
— #(S1NS3) — #(S2NS3) + #(S1 N S9N S3)

Now, using the correspondence between finite sets and finite-dimensional vector
spaces, cardinality and dimension, unions and sums, we could guess that the ana-
loguous fomula for finite-dimensional vector spaces is

dim(V; + Vo 4+ V3) = dim V4 + dim V5 + dim V3 — dim(V; N V3)
— dim(V; N V3) — dim(Vo N V3) + dim(V3 NVa N V3)

However, this formula is false. To see why, consider the following counterexample:
Take Vi to be the span of the vector (1,0) € R?, V5 to be the span of (0,1) € R?
and V3 to be the span of (1,1) € R% Since the three vectors span R?, then

Vi + Va + V3 = span((1,0), (0,1), (1,1)) = R*.
This implies that dim(V; + V4 + V3) = 2. Moreover, we also have
dimV; =dim Vs =dim V3 =1

and
VinVa=VinVs=V,NVs=ViNV,NV;={0}.

Thus, if the formula for the dimension of the sum of three subspaces was true, we

would have:
2=141+1-0—-0—-0+0

which is clearly a contradiction. Therefore, the formula is false.
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Exercise 20

68

Prove that if V7, V5 and V3 are subspaces of a finite-dimensional vector space, then

dim(V; + Vo + V3) =
=dim V; + dim V5 + dim V3
_dim(Vi NVp) + dim(V4 N V3) + dim(Va N V3)
3

_dim((Vi + Vo) N V3) + dim((Vi + V3) N Vo) + dim((Va + V3) N V1)

3

Solution

First, recall that Vi +Vo+ V3 = (V4 +V5)+ V3. Thus, using the formula in Proposition

2.43, we get
dim(Vy + Vo + V3) = dim(V; + V3) + dim Vs — dim((V4 + V5) N V3).
Now, applying the same formula to dim(V; + V3) gives us

dim(Vi + Vo 4+ V3) = dim V; + dim V, + dim V3
—dim(Vi N Va) — dim((V1 + V2) N V3).

We can repeat this process by writing Vi + Vo + V3 as (V) + V3) + V4 to get

dim(V; + Vo + V3) = dim V; + dim V5 + dim V3
—dim(V; NV3) — dim((V3 + V3) N V%).

Again, by writing V; + Vo + V3 as (Vo + V3) + V4, we get

dim(V; + Vo + V3) = dim V; + dim V3 + dim V3
~ dim(Vo 1 V3) — dim((V + V3) N Va).

If we add equations (1), (2) and (3) together, we get

3dim(Vy + Vo + V3) =
=3dimV; + 3dim V, + 3dim V3
—dim(V; N Va) — dim (V4 N V3) — dim(Ve N V)

— dim((V; + Va) N V3) — dim((Vi + V) N Vo) — dim((V, + V3) N VA).

By dividing by 3 on both sides, we obtain

dim(V; + Vo + V3) =
=dim V; + dim V5 + dim V3
~ dim(Vi N Va) + dim(V; N V3) + dim(Va N V3)
3

_dim((Vi + Vo) N V3) + dim((Vi + V3) N Vo) + dim((Va + V5) N Vl)'

3

which is the desired formula.
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Linear Maps

3A Vector Space of Linear Maps

Exercise 1
Suppose b, ¢ € R. Define T : R? — R? by

T(z,y,2) = 2z —4y + 32+ b, 62 + cryz).
Show that T is linear if and only if b = ¢ = 0.
Solution
( = ) Suppose that T is linear, then we know from Proposition 3.10 that 70 = 0.

Thus, it follows that
7(0,0,0) = (b,0) = (0,0)

which implies that b = 0. To prove that ¢ = 0, notice that by linearity of 7', we have
T(2,2,2) =2T(1,1,1).
If we plug-in the values into the definition of T', we get
(4—-8+4+6+0,12+8c)=2(2—4+3+4+0,6+¢)

which is equivalent to
(2,12 4+ 8¢c) = (2,12 + 2¢).

It follows that 12+8c = 12+ 2c which can only be true when ¢ = 0. Thus, b = ¢ = 0.
( <= ) Suppose now that b = ¢ = 0, then T'(z,y, z) becomes

T(x,y,2z) = 2z — 4y + 3z, 62)

for all z,y,z € R. Let’s show that T is linear. First, take (z,v, 2), (2/,y/,2') € R?
and notice that

T((@y,2) + (@y,2) =T+, y+9, 2+ 2)
Q2z+2)—4y+y)+3(z+7),6(x+2))
= (22 — 4y + 32 + 22" — 4y’ + 37/, 62 + 62')

= (22 — 4y + 3z,62) + (22" — 4y’ + 32, 62")
=T(x,y,z)+ T2y, 2)

69
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Moreover, given any A € R and (z,v,2) € R3, we have
T(Nz,y,2)) =T (A\x, Ay, Az)
= (2(A\x) — 4(\y) + 3(A2),6(\x))
= (AM2x — 4y + 32), \(62))
= A2z — 4y + 3z,6x)
= \T'(z,y, z)

Therefore, T is linear.

Exercise 2
Suppose b, c € R. Define T': P(R) — R? by

Tp— (3p<4> +50/6) + bn(1p(2), [

-1

23p(x)dr + csinp(())) .

Show that T is linear if and only if b = ¢ = 0.

Solution
( =) Suppose that T is linear, then if we let p be the constant polynomial equal
to m/2, we get that T must satisfy

T(2p) = 2Tp.

If we rewrite this using the definition of 7" and p, we obtain
2

2 2
37r+b7r2,7r/ z3dr + csin(r) | =2 3= —i—bW—,Z/ 23dx + csin <Z>
» 2o Va9 ), 2

which can be simplified to

2 2 2
(37r + b2, 7r/ a:3dx) = (37r + b%, 7r/ w3dx + c) .
-1 —1

This gives us the following system of equations:

37 + br? = 31 + b b=1b
2 3 2 3 —
T[T atde =7 [T aPde +c c=0

( <= ) Suppose that b = ¢ = 0, then for all p € P(R), we have

Tp = (3p(4) +55/(6), / : x3p(x)dx> |

— b=c=0.

-1
Thus, for any pi,ps € P(R), we get
2

Tor + p) (3<p1 2+ 501+ )6, [ 2 +p2><x>das)

-1

= (3001040 4 120 + 5061(0) 4 50). [ #0) + e

2 2

= (3]01(4) + 3po(4) + 5p)(6) + 5ph(6), [ 2°pi(x)dx + /

-1

x3p2(:c)d:c)

2

-1
2

- (3p1<4> +501(0). [

-1

prI(x)d:C) + (3p2(4) 4 5p4(6), /

-1

:C?’pQ(a:)dx>

= Tp1 + Tpg.
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Similarly, for all A € R and p € P(R), we have

2

T(w) = (3(@)(4) #5007 6), [

-1

23(Ap) (:c)dac)

- (3)\]7(4) +5\p'(6), /

-1

xg)\p(x)dx>

_ ()\(Bp(4) +5/(6)), A /_ 1 $3p($)d9&)

-1

Y <3p(4) +55(6), / x?’p(x)dx)

= \I'p.

Therefore, T' is linear.

Exercise 3
Suppose that 7' € L(F", F™). Show that there exist scalars A;, € Ffor j =1,....,m
and k =1, ...,n such that

T(le, ceuy .fll'n) = (Al,lxl 4+ 4 Al,nxn; ceey Am,lxl 4+ 4 Am,nxn)

for every (xy,...,2,) € F™.

Solution
Denote by ey, ..., e, the standard basis of F” and by fi, ..., f,, the standard basis for
F™, then for all k € {1,...,n}, there exist scalars A;, ..., A, x € F such that

Tek = Al,kfl + -+ Am,kfm
Therefore, by linearity, for all (z1,...,z,) € F™

T(x1,.c,xy) =x1Te; + -+ x,Te,
=x(Aifi+ - Anifm) + o oA fi o+ A fim)
= (Aizr + -+ Apra) fi + o+ (A + o+ Apn®n) fn
= (A1xr+ -+ A, o Az + -+ ApnTn).

Therefore, any linear transformation has this form.

Exercise 4
Suppose T' € L(V,W) and vy, ..., v,, is a list of vectors in V' such that Tvq, ..., Tv,,
is a linearly independent list in W. Prove that vy, ..., v, is linearly independent.

Solution
To prove that vy, ..., v,, is linearly independent, take arbitrary scalars o, ..., a,, € F
such that

a1v1 + ...+ apvy, = 0.

By evaluating on both sides by 7', we get by linearity of T" the following equation:

aTvy + ... + o, Tv, = 0.
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But since the list T'vq, ..., T'v,, is a linearly independent in W, then
a1 =..=0a,;, =0

which proves that vy, ..., v,, is linearly independent.

Exercise 5
Prove that £(V,W) is a vector space, as was asserted in 3.6.

Solution

We already proved in Section 1B Exercise 7 that for any nonempty set S and vector
space U, the set U® equipped with the usual addition and scalar multiplication is a
vector space. Hence, if we let S =V and U = W, we already know that the set of
functions from V tp W is a vector space. Since £(V,W) C WV, then it suffices to
show that £(V, W) is a subspace.

First, notice that £(V, W) is non-empty since it contains the additive identity map:
the constant zero map is linear. Given two linear maps 71,7y € L(V, W), we can
show that 71+ T, € L(V, W) by proving that it is a linear map from V' to W. Hence,
take arbitrary z,y € V and A € F to get:

(Ty+To)(x +y) = Ti(z +y) + To(z +y)
= Ty(2) + Th(y) + Ta(z) + Ta(y)
= (T + To) () + (T1 + T) (v),

and

= N1\ () + N1 (2)
= AT1(z) + Tx(2))
Thus, £(V,W) is closed under addition. Similarly, given a linear map 7" € L(V, W)

and a € F, we get that o7 € L(V, W) because for all z,y € V and X\ € F, we have
the following:

(aT)(x+y) =aT(x+y)
= a(T'(z) +T(y))
=aoT(x) + a1 (y)
= (aT)(z) + (aT)(y)

and

(aT)(A\x) = aT (Ax)
=aXT'(z
= a1 (x)
= \NaT)(z).

Therefore, L£(V, W) is a vector space since it is a subspace of WV.
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Exercise 6
Prove that the multiplication of linear maps has the associative, identity and dis-
tributive properties asserted in 3.8.

Solution
e (Associativity) Let Vi, V5, V3, V) be vector spaces and Ty : V) — Vo, To 1 Vo —
V3 and T3 : V3 — V, be linear maps. Associativity follows from the fact that
for all x € V;:

(T2)15)(x) = (Th12)(T5(x))
= T (T>(15(z)))
= TW(T215(z))
= (I1(1>13)) (z).

Since it holds for all z € X, then (T11%)T5 = T (1xT3).

e (Identity) Let V and W be vector space. Consider the identity map Iy : V —
W and let’s show that it is indeed linear. For all x,y € V:

Iy(z+y) =z+y=Iv(z)+ Iv(y)
and for any A € F and z € V:

Therefore, I, is linear. To prove that it is the multiplicative identity in
LV, W), let T :V — W be a linear map and x € V, then

(IyT)(z) = Iy(Tx) = Tx
and
(Tly)(z) =T(Iyx) =Tx
so IyT =TIy =T for all linear maps T' € L(V, W).
e (Distributivity 1) Let U, V,W be vector spaces, S1,5 € L(V,W) and T €
L(U, V), then for all x € V, we have
[(S1+ 52)T](z) = (51 + 52)(Tx)
= 51(Tx) + S2(Tx)
= (S17)(z) + (S2T)(x)
= [S1T + SoT(x).

Since it holds for all z € U, then (S + S)T = S1T + SoT.

e (Distributivity 2) Let U,V,W be vector spaces, S € L(V,W) and T3,T, €
L(U,V), then for all z € V' and by linearity of S, we have
[S(Ty + To))(x) = S((Ty + T2)(2))
= S(Th(z) + Tr(x))
= S(Ti(x)) + S(Tx(z))
= (ST1)(z) + (ST3)(z)
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Since it holds for all x € U, then S(Ty 4+ Ty) = ST + STs.

Exercise 7

Show that every linear map from a one-dimensional vector space to itself is multi-
plicative by some scalar. More precisely, prove that if dimV = 1 and T € L(V),
then there exists A € F such that Tv = \v for all v € V.

Solution

Since dim V' = 1, then there is a vy € V such that V' = span(vy). We have Tvy €
span(vg) so there is a A € F satisfying Tvg = Avy. Take v € V, since v € span(vy),
then there is an o« € F such that v = avy. Thus:

Tv =Tavy = aTvy = alvg = \v.

Exercise 8

Give an example of a function ¢ : R> — R such that
plav) = ap(v)

for all @ € R and all v € R? but ¢ is not linear.

Solution

Consider the function ¢ : R* — R defined by ¢(z,y) = /(x + y)3, then for all
x,y € R and a € R, we have

plaz, ay) = v/ (az + ay)?
= Va(z+y)?
— /TP
= ap(z,y).

However, notice that (1,0) = ¢(0,1) = 1 but (1,1) = /2 so ¢(1,1) # ¢(1,0) +
©(0,1) so p is not linear.

Exercise 9
Give an example of a function ¢ : C — C such that

p(w+ z) = p(w) + ¢(2)

for all w, z € C but ¢ is not linear. (Here, C is thought of as a complex vector space.)

Solution
Consider the function ¢ : C — C defined by ¢(z) = Re(z), then for all w,z € C,
we know that

Re(w + z) = Re(w) + Re(2).

However, Re(i) = 0 and ¢ Re(1) =i so Re(i-1) # i Re(1). Therefore, ¢ is not linear.

Exercise 10
Prove or give a counterexample: If ¢ € P(R) and T : P(R) — P(R) is defined by
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Tp = qop, then T is a linear map.

Solution
Consider the following counterexample: Take ¢ = x? and define the map T': P(R) —
P(R) by

Tp=qop=p’
for all p € P(R). Notice that T(z + 1) = 2> + 2z + 1 but T(z) + T(1) = z* + 1.
Thus, T(x + 1) # T(x) + T(1) so T is not a linear map.

Exercise 11
Suppose V is a finite-dimensional vector space and T' € L(V). Prove that T is a
scalar multiple of the identity if and only if ST =TS for all S € L(V).

Solution
First, let T" be a scalar multiple of the identity, then there is a A € F such that
Tv = Xv for all v € V. Let S be an arbitrary linear map from V to V, then for all
velV:

(ST)v = S(Tv) = S(\v) = ASv =T(Sv) = (T'S)v.

Since it holds for all v € V| then ST =T'S.

To prove that the converse holds, fix a basis vy, ...,v, of V and for all 7 between 1
and n, define S; as the linear map satisfying S;v; = v; and S;v, = 0 for all & # 1
(such a linear map is well-defined and unique by Lemma 3.4). Let T' € £(V), then
for all ¢ between 1 and n, there exist scalars A;1,..., A;, € F such that

T’UZ‘ = Ai,lvl + ...+ Ai,nvn-

Suppose that T satisfies ST = T'S for all S € L(V), then in particular, for all fixed
i between 1 and n, we have (S;T)v; = (T'S;)v;. Using the definitions and properties
of S; and T, we get that

(SiT)Ul = (TS1>U1 — Si(Al,lvl 4+ ...+ Al,nvn) = T’UZ‘
— Al,lvi = A@ﬂ)l + ...+ Ai’nvn

and by uniqueness of representations of vectors in V' as linear combinations of the
basis, we get that A; ; = 0 for all i # j and A;; = A;;. Thus, if we let A = A, 1, we
obtain that for all 7,

TUZ‘ = Ai,lvl + ...+ Amvn = /\Uz‘.

Therefore, it follows that 7' is equal to A times the identity map, i.e., a scalar mul-
tiple of the identity.

Exercise 12
Suppose U is a subspace of V with U # V. Suppose S € L(U, W) and S # 0 (which
means that Su # 0 for some u € U). Define T : V — W by

Sv ifvel,
Tv =
0 ifveVandov¢U.

Prove that T is not a linear map on V.
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Solution

Since U # V/, then there is a vo € V \ U. The fact that S is not the zero trans-
formation implies that there is a vector v € U such that Su # 0. Moreover, since
U is a subspace and u € U, then vy + v € U implies that vqg € U. A contradiction
that shows that u +vy € V' \ U. Thus, by definition of T', we have Tvy = 0 and
T(vo+u) = 0. If T is linear, then we would get

0="T(vo+u)=Tvy+Tu = Su.

But this is a contradiction since we defined u such that Su # 0. Thus, no such
linear transformation 7' exists.

Exercise 13

Suppose V is finite-dimensional. Prove that every linear map on a subspace of V' can
be extended to a linear map on V. In other words, show that if U is a subspace of
Vand S € L(U, W), then there exists T' € L(V, W) such that Tu = Su for allu € U.

Solution

Let uq, ..., u, be a basis of U, then it can be extended to a basis uq, ..., u,, of V where
m > n. Define T on this basis as follows: Tu; = Su; if i < n and Tu; = 0 otherwise.
By Lemma 3.4, T" is a well-defined linear map from V to W. Let’s now prove that
T extends S. Let u € U, then there exist scalars aq, ..., a, € F such that

U= U1 + ... + QpUp.
Applying T on both sides an using the linearity of T, we get
Tu=oTu + ... + o, Tu,,.
By construction of T', we know that T'u; = Su; for all ¢ between 1 and n:
Tu = a1 Suy + ... + a, Su,.
Finally, by linearity of S:
Tu = S(ouy + ... + apuy,) = Su.

It follows that T is linear map that extends S on V.

Exercise 14
Suppose V is finite-dimensional with dim V' > 0, and suppose W is infinite-dimensional.
Prove that £(V, W) is infinite-dimensional.

Solution

Let vq,...,v, be a basis of V. From Section 2A Exercise 17, we know that there
exists a sequence wi, wy, ... in W such that the list wy, ..., w,, is linearly independent
for all m. For all k, define the map T}, : V — W to be the unique linear map such
that Tpv, = wy and Tpv; = 0 for all i between 2 and n. Let’s show that for all m,
the list T3, ..., T}, is linearly independent in L(V,W). Let oy, ..., € F be scalars
such that

OélTl + ...+ Oéme = 0,
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then in particular, if we plug-in v, we get
aiwi + ... + apw, = 0.

By our assumption on the sequence wy,ws, ..., we know that it implies that oy =
... =, = 0. Thus, the list T1, ..., T,, is linearly independent. Since it holds for all
m, then by Section 2A Exercise 17, L(V, W) is infinite-dimensional.

Exercise 15

Suppose vy, ..., v, is a linearly dependent list of vectors in V. Suppose also that
W # {0}. Prove that there exist wy, ..., w,, € W such that no T" € L(V, W) satisfies
Ty, = wy, for each k=1,...,m.

Solution

If the list has length 1, then vy must be zero vector so it suffices to take w; € W\ {0}.
Hence, every linear map T would map v; to zero which is different than w;.
Assume that m > 1, since the list v, ..., v, is linearly independent, then without
loss of generality, we can assume that v,, can be written as a linear combination of
the other vectors. Thus, let wy = ... = w,,_; = 0 and w,, € W \ {0} (which must
exists since W # {0}). Let T be a linear map and suppose that Tv, = wy, for each
k =1,...,m. However, since there exist scalars oy, ..., a,,_1 such that

Uy, = 1V + oo + Qup—1VUpp—1,
then by applying T on both sides, we get
Tvy, =a1Tvy + . + a1 T 1 = 0 # wy,.
Therefore, no linear map T satisfies Tvy = wy for each k =1, ..., m.

Exercise 16
Suppose V' is finite-dimensional with dim V' > 1. Prove that there exist S, T € L(V)
such that ST # T'S.

Solution

We know from Exercise 11 that the linear maps that commute with every other
linear map are precisely the scalar multiples of the identity map. Hence, it suffices
to show that there exists a linear map that is not a scalar multiple of the identity.
Let vy, ..., v, be a basis of V' (so n > 2) and define T : V' — V to be the unique linear
map such that Tu; = u; and Tu; = 0 for 7 between 2 and n. Such a transformation
exists by Lemma 3.4. If T" was a scalar multiple of the identity, then T'u; = u; would
imply that T is the identity since u;. However, Tus = 0 even if us # 0. Thus, by
contradiction, 7T is not a scalar multiple of the identity. Therefore, there must be a
linear map S such that ST # T'S.

Exercise 17
Suppose V is finite-dimensional. Show that the only two-sided ideals of £L(V') are
{0} and L(V).
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Solution
Let € be a two-sided ideal of L(V'), if & = {0}, then we are done. Assume that
& # {0}, then there must be a non-zero linear map 7" in € and scalars {4;,} C F
such that

Uj = Al,jvl + + van
for all j between 1 and n. Since T is non-zero, then it follows that there exist iq and

Jo between 1 and n such that A;, j, # 0. Moreover, for all ¢ and j between 1 and n,

define the linear map S, ; € L(V) by
i k= '7
Si Uk = ! ]
0 k#j.

Consider the map A —Siosiol Sio.jo, since & is a two-sided ideal, then this map
20,7
belongs to £. Let k be an integer between 1 and n, if k& # jp, then

1
—Sz K} TS JoUk = —Sz J T(O) = 0,
Aio,jo 0,20 J0,J0 Aio,jo 0,20
and if £ = jy, then
1
Sz % TS —Sz )i Tv;
Azo o 0,20 jo.jo ¥ Aio,jo 0,20 Jo
1
= A—Sio’io (Al,jovl + ...+ An,jovn)
20,70
1
= Aio,jo Aio,jovio
Vig

Thus, by definition of the maps S; ;s and by uniqueness part of Lemma 3.4, we get

that
1
A

10,J0

SioJOTSjOJO = Si01j0 .

Hence, the map S;, j, is in €. From this, we get that for all 7 and j between 1 and
n, the map S; i, Sip.i055.; 15 in € as well. But notice that for all £ between 1 and n,
if k # 7, then

SiioSio.jo 2 jo.j Uk = 0,

and k = j, then
SisioSiojo g0, Vk = SisioDio,jo Vi = SivioVip = Vi-

10,50

Thus, again, by the uniqueness part of Lemma 3.4 and since it holds for all 7, j, then
S;; € € for all 4, j. We are now ready to show that & = L£(V). Since &€ is a subspace
of L(V), then it suffices to prove that L(V) C €. Let S € L(V), then there exist
scalars {B; ;};; C F such that

S?]j = Bl,jvl 4+ ...+ Bn,jvfu
for all j. Consider the map S defined by

g - Z Z Bi,kSi,k'

i=1 k=1
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Since £ is a subspace that contains all the S; ;’s, then S € €. Moreover, notice that

for all 7,
SU]‘ = Z Z B; 15i kv = Z B jvi = Sv;.
i=1

i=1 k=1
Since it holds for all j, then by Lemma 3.4, we have that S = S € £. Since it holds
for all S € L(V), then L(V) = E. Therefore, the only two-sided ideals of L£(V') are
{0} and L(V).
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3B Null Spaces and Ranges

Exercise 1
Give an example of a linear map 7" with dimnull 7" = 3 and dimrange T = 2.

Solution
TODO

Exercise 2
Suppoe S, T € L(V) are such that range S C null 7. Prove that (ST)? = 0.

Solution
TODO

Exercise 3
Suppose vy, ..., U, is a list of vectors in V. Define T' € L(F™, V') by

T (21, Zm) = 2101 + oo + ZmUm.
(a) What property of T' corresponds to vy, ..., v, spanning V7

(b) What property of T corresponds to the list vy, ..., v,, being linearly indepen-
dent?

Solution
TODO

Exercise 4
Show that {T' € L(R?,R*) : dimnull T > 2} is not a subspace of L(R® R*).

Solution
TODO
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3C Matrices

Exercise 1
TODO

Solution
TODO

81
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3D Invertibility and Isomorphisms

Exercise 1
TODO

Solution
TODO

82
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3E Products and Quotients of Vector Spaces

Exercise 1
TODO

Solution
TODO

83
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3F Duality

Exercise 1
TODO

Solution
TODO
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