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Preface

The goal of this document is to share my personal solutions to the exercises in the
Fourth Edition of Linear Algebra Done Right by Sheldon Axler during my reading.
As a disclaimer, the solutions are not unique and there will probably be better
or more optimized solutions than mine. Feel free to correct me or ask me anything
about the content of this document at the following address : samy.lahloukamal@mcgill.ca
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Chapter 1

Vector Spaces

1A Rn and Cn

Exercise 1

Show that α + β = β + α for all α, β ∈ C.

Solution

First, suppose that
α = a+ ib and β = c+ id

where a, b, c, d ∈ R, then

α + β = (a+ ib) + (c+ id)

= (a+ c) + i(b+ d)

= (c+ a) + i(d+ b)

= (c+ id) + (a+ ib)

= β + α

which proves that addition is commutative in C using the fact that it is commuta-
tive in R.

Exercise 2

Show that (α + β) + λ = α + (β + λ) for all α, β, λ ∈ C.

Solution

First, suppose that

α = a+ ib, β = c+ id and λ = e+ if

where a, b, c, d, e, f ∈ R, then

(α + β) + λ = [(a+ ib) + (c+ id)] + (e+ if)

= [(a+ c) + i(b+ d)] + (e+ if)

= ([a+ c] + e) + i([b+ d] + f)

= (a+ [c+ e]) + i(b+ [d+ f ])

= (a+ ib) + [(c+ e) + i(d+ f)]

= (a+ ib) + [(c+ id) + (e+ if)]

= α + (β + λ)

3



CHAPTER 1. VECTOR SPACES 4

which proves that addition is associative in C using the fact that it is associative in
R.

Exercise 3

Show that (αβ)λ = α(βλ) for all α, β, λ ∈ C.

Solution

First, suppose that

α = a+ ib, β = c+ id and λ = e+ if

where a, b, c, d, e, f ∈ R, then

(αβ)λ = [(a+ ib)(c+ id)](e+ if)

= [(ac− bd) + i(ad+ bc)](e+ if)

= ([ac− bd]e− [ad+ bc]f) + i([ac− bd]f + [ad+ bc]e)

= (ace− bde− adf − bcf) + i(acf − bdf + ade+ bce)

= (a[ce− fd]− b[cf + de)) + i(a[cf + de] + b[ce− fd])

= (a+ ib)[(ce− fd) + i(cf + de)]

= (a+ ib)[(c+ id)(e+ if)]

= α(βλ)

which proves that multiplication is associative in C using the fact that multiplica-
tion is associative and addition is commutative in R.

Exercise 4

Show that λ(α + β) = λα + λβ for all λ, α, β ∈ C.

Solution

First, suppose that

α = a+ ib, β = c+ id and λ = e+ if

where a, b, c, d, e, f ∈ R, then

λ(α + β) = (e+ if)[(a+ ib) + (c+ id)]

= (e+ if)[(a+ c) + i(b+ d)]

= [e(a+ c)− f(b+ d)] + i[e[b+ d] + f [a+ c]]

= (ea+ ec− fb− fd) + i(eb+ ed+ fa+ fc)

= [(ea− fb) + i(eb+ fa)] + [(ec− fd) + i(ed+ fc)]

= [(e+ if)(a+ ib)] + [(e+ if)(c+ id)]

= λα+ λβ

which proves the distributivity in C using the distributivity in R.

Exercise 5

Show that for every α ∈ C, there exists a unique β ∈ C such that α + β = 0.
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Solution

Let α = a+ ib and consider β = (−a) + i(−b), then we get

α + β = (a+ ib) + ([−a] + i[−b])

= (a+ [−a]) + i(b+ [−b])

= 0 + i0

= 0

which proves the existence of such a complex number β. To prove the uniqueness of
such a complex number, let β1 and β2 be two complex numbers satisfying α+β1 = 0
and α + β2 = 0, this implies that α + β1 = α + β2. If we add β1 on both sides, we
get

β1 + (α + β1) = β1 + (α + β2) =⇒ (β1 + α) + β1 = (β1 + α) + β2

=⇒ (α + β1) + β1 = (α + β1) + β2

=⇒ 0 + β1 = 0 + β2

=⇒ β1 = β2

which proves that such a complex number is unique.

Exercise 6

Show that for every α ∈ C with α ̸= 0, there exists a unique β ∈ C such that αβ = 1.

Solution

Let α = a+ ib ̸= 0, then notice that we must have a2 + b2 ̸= 0. Hence, consider

β =

(
a

a2 + b2

)
+ i

(
− b

a2 + b2

)
Thus, we get

αβ = (a+ ib)

[(
a

a2 + b2

)
+ i

(
− b

a2 + b2

)]
=

(
a

(
a

a2 + b2

)
− b

(
− b

a2 + b2

))
+ i

(
a

(
− b

a2 + b2

)
+ b

(
a

a2 + b2

))
=

a2 + b2

a2 + b2
+ i

−ab+ ba

a2 + b2

= 1 + i0

= 1

which proves the existence of such a complex number β. To prove the uniqueness of
such a complex number, let β1 and β2 be two complex numbers satisfying αβ1 = 1
and αβ2 = 1, this implies that αβ1 = αβ2. If we multiply by β1 on both sides, we
get

β1(αβ1) = β1(αβ2) =⇒ (β1α)β1 = (β1α)β2

=⇒ (αβ1)β1 = (αβ1)β2

=⇒ 1 · β1 = 1 · β2

=⇒ β1 = β2
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which proves that such a complex number is unique.

Exercise 7

Show that
−1 +

√
3i

2

is a cube root of 1 (meaning that its cube equals 1).

Solution

This is pretty straightforward:(
−1 +

√
3i

2

)3

=
(−1 +

√
3i)3

23

=
(−1)3 + 3(−1)2(

√
3i) + 3(−1)1(

√
3i)2 + (

√
3i)3

8

=
−1 + 3

√
3i+ 3 · 3− 3(

√
3i)

8

=
8

8
= 1

Exercise 8

Find two distinct square roots of i.

Solution

Consider α =
√
2
2
+ i

√
2
2
and β = −

√
2
2
− i

√
2
2
. Hence,

α2 =

(√
2

2
+ i

√
2

2

)2

=

(√
2

2

)2

+ 2 ·
√
2

2
· i
√
2

2
+

(
i

√
2

2

)2

=
2

4
+ i− 2

4
= i

and

β2 =

(
−
√
2

2
− i

√
2

2

)2

=

(
−
√
2

2

)2

+ 2 ·

(
−
√
2

2

)
·

(
−i

√
2

2

)
+

(
−i

√
2

2

)2

=
2

4
+ i− 2

4
= i
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Therefore, α and β are two distinct square roots of i.

Exercise 9

Find x ∈ R4 such that

(4,−3, 1, 7) + 2x = (5, 9,−6, 8).

Solution

First, suppose that such an element x exists, then there exist a, b, c, d ∈ R such that
x = (a, b, c, d) and

(4 + 2a,−3 + 2b, 1 + 2c, 7 + 2d) = (5, 9,−6, 8)

But notice that this is equivalent to the following system of equations:
4 + 2a = 5

−3 + 2b = 9

1 + 2c = −6

7 + 2d = 8

which implies that 
a = 1

2

b = 6

c = 7
2

d = 1
2

Therefore, we get that x = (1
2
, 6, 7

2
, 1
2
) ∈ R4 is indeed a solution to our original

equation.

Exercise 10

Explain why there is does not exist λ ∈ C such that

λ(2− 3i, 5 + 4i,−6 + 7i) = (12− 5i, 7 + 22i,−32− 9i).

Solution

By contradiction, suppose there exists a complex number λ = a+ ib such that

λ(2− 3i, 5 + 4i,−6 + 7i) = (12− 5i, 7 + 22i,−32− 9i)

Then, we would get the following system of equation:
λ(2− 3i) = 12− 5i

λ(5 + 4i) = 7 + 22i

λ(−6 + 7i) = −32− 9i

which is equivalent to 
λ = 3 + 2i

λ = 3 + 2i

λ = 129
85

+ i278
85
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We clearly have a contradiction since 3 + 2i ̸= 129
85

+ i278
85
. Therefore, there doesn't

exist such a complex number λ.

Exercise 11

Show that (x+ y) + z = x+ (y + z) for all x, y, z ∈ Fn.

Solution

First, write

x = (x1, ..., xn), y = (y1, ..., yn) and z = (z1, ..., zn)

Since addition is commutative in F, we get

(x+ y) + z = [(x1, ..., xn) + (y1, ..., yn)] + (z1, ..., zn)

= (x1 + y1, ..., xn + yn) + (z1, ..., zn)

= ([x1 + y1] + z1, ..., [xn + yn] + zn)

= (x1 + [y1 + z1], ..., xn + [yn + zn])

= (x1, ..., xn) + (y1 + z1, ..., yn + zn)

= (x1, ..., xn) + [(y1, ..., yn) + (z1, ..., zn)]

= x+ (y + z)

which proves that addition is associative in Fn.

Exercise 12

Show that (ab)x = a(bx) for all x ∈ Fn and all a, b ∈ F.

Solution

First, write x = (x1, ..., xn). Using associativity of multiplication in F, we get

(ab)x = (ab)(x1, ..., xn)

= ((ab)x1, ..., (ab)xn)

= (a(bx1), ..., a(bxn))

= a(bx1, ..., bxn)

= a[b(x1, ..., xn)]

= a(bx)

which proves the desired formula for all x ∈ Fn and all a, b ∈ F.

Exercise 13

Show that 1x = x for all x ∈ Fn.

Solution

Let x = (x1, ..., xn) ∈ Fn. Hence,

1x = 1(x1, ..., xn)

= (1 · x1, ..., 1 · xn)

= (x1, ..., xn)

= x
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which proves the desired formula for all x ∈ Fn.

Exercise 14

Show that λ(x+ y) = λx+ λy for all λ ∈ F and x, y ∈ Fn.

Solution

Let λ ∈ F and x, y ∈ Fn with x = (x1, ..., xn) and y = (y1, ..., yn). Using distribu-
tivity in F, we get

λ(x+ y) = λ[(x1, ..., xn) + (y1, ..., yn)]

= λ(x1 + y1, ..., xn + yn)

= (λ(x1 + y1), ..., λ(xn + yn))

= (λx1 + λy1, ..., λxn + λyn)

= (λx1, ..., λxn) + (λy1, ..., λyn)

= λ(x1, ..., xn) + λ(y1, ..., yn)

= λx+ λy

which proves the desired formula.

Exercise 15

Show that (a+ b)x = ax+ bx for all a, b ∈ F and all x ∈ Fn.

Solution

Let a, b ∈ F and x = (x1, ..., xn) ∈ Fn. Using distributivity in F, we get

(a+ b)x = (a+ b)(x1, ..., xn) = ((a+ b)x1, ..., (a+ b)xn)

= (ax1 + bx1, ..., axn + bxn)

= (ax1, ..., axn) + (bx1, ..., bxn)

= a(x1, ..., xn) + b(x1, ..., xn)

= ax+ bx

which proves the desired formula.
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1B De�nition of Vector Space

Exercise 1

Prove that −(−v) = v for every v ∈ V .

Solution

Let v ∈ V , by de�nition, we know that by de�nition, −v is de�ned as the only vector
in V satisfying

v + (−v) = 0

which is equivalent to
(−v) + v = 0

by commutativity of addition in V . However, notice that by de�nition, −(−v) is
the unique vector satisfying

(−v) + [−(−v)] = 0

But since v itself also satis�es this equation, we get −(−v) = v by uniqueness.

Exercise 2

Suppose a ∈ F, v ∈ V , and av = 0. Prove that a = 0 or v = 0.

Solution

Suppose that a ̸= 0, then by properties of F, the inverse a−1 exists. Hence, if we
multiply by a−1 on both sides, we get

av = 0 =⇒ a−1(av) = a−10

=⇒ (a−1a)v = 0

=⇒ 1v = 0

=⇒ v = 0

Therefore, we either have a = 0 or v = 0.

Exercise 3

Suppose v, w ∈ V . Explain why there exists a unique x ∈ V such that v + 3x = w.

Solution

By properties of vector spaces, since v ∈ V , then −v ∈ V . Similarly, since w and −v
are in V , then w+(−v) ∈ V . Finally, since w+(−v) ∈ V , then 3−1(w+(−v)) ∈ V .
Thus, de�ne x0 as the vector 3

−1(w + (−v)) in V . Notice that

v + 3x0 = v + 3[3−1(w + (−v))]

= v + (3 · 3−1)(w + (−v))

= v + 1(w + (−v))

= v + (w + (−v))

= v + ((−v) + w)

= (v + (−v)) + w

= 0 + w

= w
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which shows that the equation has at least one solution. To prove uniqueness, let
x1 ∈ V be an arbitrary solution to the equation, then we get

v + 3x1 = w =⇒ (−v) + (v + 3x1) = (−v) + w

=⇒ ((−v) + v) + 3x1 = w + (−v)

=⇒ 0 + 3x1 = w + (−v)

=⇒ 3x1 = w + (−v)

=⇒ 3−1(3x1) = 3−1(w + (−v))

=⇒ (3−13)x1 = x0

=⇒ 1x1 = x0

=⇒ x1 = x0

which proves that x0 is the unique solution to the equation.

Exercise 4

The empty set is not a vector space. The empty set fails to satisfy only one of the
requirements listed in the de�nition of a vector space. Which one?

Solution

The empty set doesn't satisfy the axiom that states that there must be an additive
identity since the empty set is empty by de�nition.

Exercise 5

Show that in the de�nition of a vector space, the additive inverse condition can be
replaced with the condition that

0v = 0 for all v ∈ V.

Here, the 0 on the left side is the number 0, and the 0 on the right side is the additive
identity of V .

Solution

We already know that the axioms of a vector space imply that 0v = 0 for all v ∈ V .
Hence, it su�ces to prove that if we assume the axioms of a vector space without
the additive inverse condition, then we can prove the additive inverse condition if
we also assume the property that 0v = 0 for all v ∈ V . Let v ∈ V , the by the
distributive condition, we get

0v = 0 =⇒ (1 + (−1))v = 0

=⇒ 1v + (−1)v = 0

=⇒ v + (−1)v = 0

which proves that v has an additive inverse for all v ∈ V .

Exercise 6

Let ∞ and −∞ denote two distinct objects, neither of which is in R. De�ne an
addition and scalar multiplication on R ∪ {∞,−∞} as you could guess from the
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notation. Speci�cally, the sum and product of two reals numbers is as usual, and
for t ∈ R de�ne

t∞ =


−∞ if t < 0,

0 if t = 0,

∞ if t > 0,

t(−∞) =


∞ if t < 0,

0 if t = 0,

−∞ if t > 0,

and

t+∞ = ∞+ t = ∞+∞ = ∞
t+ (−∞) = (−∞) + t = (−∞) + (−∞) = −∞

∞+ (−∞) = (−∞) +∞ = 0

With these operations of addition and scalar multiplication, is R∪{∞,−∞} a vec-
tor space over R? Explain.

Solution

With these operations of addition and scalar multiplication, R ∪ {∞,−∞} cannot
be a vector space since

((−∞) +∞) +∞ = 0 +∞ = ∞

and
(−∞) + (∞+∞) = (−∞) +∞ = 0

which proves that addition isn't associative under this operation.

Exercise 7

Suppose S is a nonempty set. Let V S denote the set of functions from S to V .
De�ne a natural addition and scalar multiplication on V S, and show that V S is a
vector space with these de�nitions.

Solution

For any f and g in V S, de�ne f + g : S → V by s 7→ f(s) + g(s) for all s ∈ S.
Similarly, for all α ∈ F and f ∈ V S, de�ne αf : S → V by s 7→ λf(s) for all s ∈ S.
With these de�nitions, let's prove that V S is a vector space.

� (commutativity) Let f, g ∈ V S, let's show that f + g = g + f . Let s ∈ S,
then by commutativity in V , we obviously have

(f + g)(s) = f(s) + g(s) = g(s) + f(s) = (g + f)(s)

Since it holds for all s, then f + g = g + f .

� (associativity) Let f, g, h ∈ V S and s ∈ S, then by associativity in V , we
have

[(f + g) + h](s) = (f + g)(s) + h(s)

= [f(s) + g(s)] + h(s)

= f(s) + [g(s) + h(s)]

= f(s) + (g + h)(s)

= [f + (g + h)](s)
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Since it holds for all s ∈ S, then (f + g) + h = f + (g + h).
Let now f ∈ V S, a, b ∈ F and s ∈ S, then by associativity in V , we get:

[(ab)f ](s) = (ab)f(s)

= a(bf(s))

= a(bf)(s)

= [a(bf)](s)

Since it holds for all s ∈ S, then (ab)f = a(bf).

� (additive identity) Let's denote by 0V S the zero function in V S, then for all
f ∈ V S and s ∈ S, we have

(f + 0V S)(s) = f(s) + 0V S(s) = f(s) + 0 = f(s)

Since it holds for all s ∈ S, then f + 0V S = f for all f ∈ V S.

� (additive inverse) Again, let's denote by 0V S the zero function in V S, then
for all f ∈ V S, we can de�ne the function g = (−1)f ∈ V S. Hence, for all
s ∈ S, we get

(f + g)(s) = f(s) + g(s)

= f(s) + (−1)f(s)

= f(s) + (−f(s))

= 0

= 0V S(s)

Since it holds for all s ∈ S, then f + g = 0V S .

� (multiplicative identity) Let f ∈ V S, then for all s ∈ S, we have

(1f)(s) = 1f(s) = f(s)

Since it holds for all s ∈ S, then 1f = f .

� (distributive property) Let f, g ∈ V S, a ∈ F and s ∈ S, then

[a(f + g)](s) = a(f + g)(s)

= a(f(s) + g(s))

= af(s) + ag(s)

= (af)(s) + (ag)(s)

= (af + ag)(s)

Since it holds for all s ∈ S, then a(f + g) = af + ag. Similarly, for all f ∈ V S,
a, b ∈ F and s ∈ S, we have

[(a+ b)f ](s) = (a+ b)f(s)

= af(s) + bf(s)

= (af)(s) + (bf)(s)

= (af + bf)(s)

Since it holds for all s ∈ S, then (a+ b)f = af + bf .
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Therefore, V S is a vector space under these de�nitions.

Exercise 8

Suppose V is a real vector space.

� The complexi�cation of V , denoted by VC, equals V ×V . An element of VC is
an ordered pair (u, v), where u, v ∈ V , but we write this as u+ iv.

� Addition on VC is de�ned by

(u1 + iv1) + (u2 + iv2) = (u1 + u2) + i(v1 + v2)

for all u1, v1, u2, v2 ∈ V .

� Complex scalar multiplication on VC is de�ned by

(a+ ib)(u+ iv) = (au− bv) + i(av + bu)

for all a, b ∈ R and all u, v ∈ V .

Prove that with these de�nitions of addition and scalar multiplication as above, VC

is a complex vector space.

Solution

� (commutativity) Let u1, v1, u2, v2 ∈ V , then by commutativity in V , we have

(u1 + iv1) + (u2 + iv2) = (u1 + u2) + i(v1 + v2)

= (u2 + u1) + i(v2 + v1)

= (u2 + iv2) + (u1 + iv1)

which proves that addition is commutative.

� (associativity) Let u1, v1, u2, v2, u3, v3 ∈ V , then by associativity in V , we
have

[(u1 + iv1) + (u2 + iv2)] + (u3 + iv3) = [(u1 + u2) + i(v1 + v2)] + (u3 + iv3)

= ([u1 + u2] + u3) + i([v1 + v2] + v3)

= (u1 + [u2 + u3]) + i(v1 + [v2 + v3])

= (u1 + iv1) + [(u2 + u3) + i(v2 + v3)]

= (u1 + iv1) + [(u2 + iv2) + (u3 + iv3)]

Let now a, b, c, d ∈ R and u, v ∈ V , then we get:

[(a+ bi)(c+ di)](u+ iv)

= [(ac− bd) + i(ad+ bc)](u+ iv)

= [(ac− bd)u− (ad+ bc)v] + i[(ac− bd)v + (ad+ bc)u]

= [acu− bdu− adv − bcv] + i[acv − bdv + adu+ bcu]

= [a(cu− dv)− b(cv + du)] + i[a(cv + du) + b(cu− dv)]

= (a+ ib)[(cu− dv) + i(cv + du)]

= (a+ ib)[(c+ id)(u+ iv)]

which proves the associativity condition.
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� (additive identity) For all u, v ∈ V ,

(u+ iv) + (0 + i0) = (u+ 0) + i(v + 0) = u+ iv

which proves that 0 + i0 is an additive identity.

� (additive inverse) Let u, v ∈ V , then since (−u), (−v) ∈ V , we get

(u+ iv) + ([−u] + i[−v]) = (u+ [−u]) + i(v + [−v]) = 0 + i0

which proves that every element has an additive inverse.

� (multiplicative identity) Let u, v ∈ V , then

(1 + i0)(u+ iv) = (1u− 0v) + i(1v + 0u) = u+ iv

which proves that 1 = 1 + i0 is a multiplicative identity.

� (distributive property) Let a, b ∈ R and u1, v1, u2, v2 ∈ V , then

(a+ ib)[(u1 + iv1) + (u2 + iv2)]

= (a+ ib)([u1 + u2] + i[v1 + v2])

= (a[u1 + u2]− b[v1 + v2]) + i(a[v1 + v2] + b[u1 + u2])

= (au1 + au2 − bv1 − bv2) + i(av1 + av2 + v1 + bv2)

= ([au1 − bv1] + [au2 − bv2]) + i([av1 + bu1] + [av2 + bu1])

= [(au1 − bv1) + i(av1 + bu1)] + [(au2 − bv2) + i(av2 + bu2)]

= [(a+ ib)(u1 + iv1)] + [(a+ ib)(u2 + iv2)]

Similarly, for all a, b, c, d ∈ R, and u, v ∈ R, we have

[(a+ ib) + (c+id)](u+ iv)

= ([a+ c] + i[b+ d])(u+ iv)

= ([a+ c]u− [b+ d]v) + i([a+ c]v + [b+ d]u)

= (au+ cu− bv − dv) + i(av + cv + bu+ du)

= ([au− bv] + [cu− dv]) + i([av + bu] + [cv + du])

= [(au− bv) + i(av + bu)] + [(cu− dv) + i(cv + du)]

= (a+ ib)(u+ iv) + (c+ id)(u+ iv)

which proves the distributive property.

Therefore, VC is a vector space under these de�nitions.
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1C Subspaces

Exercise 1

For each of the following subsets of F3, determine whether it is a subspace of F3.

(a) {(x1, x2, x3) ∈ F3 : x1 + 2x2 + 3x3 = 0}

(b) {(x1, x2, x3) ∈ F3 : x1 + 2x2 + 3x3 = 4}

(c) {(x1, x2, x3) ∈ F3 : x1x2x3 = 0}

(d) {(x1, x2, x3) ∈ F3 : x1 = 5x3}

Solution

(a) First, de�ne
U = {(x1, x2, x3) ∈ F3 : x1 + 2x2 + 3x3 = 0}

Let's prove that it is indeed a subspace of F3. Since 0 + 2 · 0 + 3 · 0 = 0,
then 0 = (0, 0, 0) ∈ U . Now, let x, y ∈ U be two arbitrary elements where
x = (x1, x2, x3) and y = (y1, y2, y3), then by de�nition:{

x1 + 2x2 + 3x3 = 0

y1 + 2y2 + 3y3 = 0

Adding the two equations gives us

(x1 + y1) + 2(x2 + y2) + 3(x3 + y3) = 0 + 0 = 0

which proves that x + y = (x1 + y1, x2 + y2, x3 + y3) ∈ U . Similarly, let
x = (x1, x2, x3) be an arbitrary element in U and α an arbitrary scalar in F,
then by de�nition of U :

x1 + 2x2 + 3x3 = 0

Multiplying by α on both sides gives us

(αx1) + 2(αx2) + 3(αx3) = α · 0 = 0

which proves that αx ∈ U . Therefore, U is a subspace of F3.

(b) Since 0 = (0, 0, 0) doesn't satisfy x1 + 2x2 + 3x3 = 4, then the set of such
vectors cannot be a subspace since it doesn't contain the zero vector.

(c) Let U = {(x1, x2, x3) ∈ F3 : x1x2x3 = 0} and notice that that both x =
(1, 1, 0) and y = (0, 0, 1) are in U . However, x+ y is obviously not in U since
x+ y = (1, 1, 1) and 1 · 1 · 1 = 1. Therefore, U is not a subspace of F3.

(d) De�ne U = {(x1, x2, x3) ∈ F3 : x1 = 5x3} and let's show that it is a subspace
of F3. First, since 0 = 5 · 0, then 0 = (0, 0, 0) ∈ U . To prove that U is
closed under addition, let x = (x1, x2, x3) and y = (y1, y2, y3) be two arbitrary
elements of U , then by de�nition:{

x1 = 5x3

y1 = 5y3
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By adding the two equations together, we get

x1 + y1 = 5(x3 + y3)

Thus, x+ y = (x1+ y1, x2+ y2, x3+ y3) ∈ U . Finally, to prove that U is closed
under scalar multiplication, let x = (x1, x2, x3) be an element of U and α ∈ F,
then

x1 = 5x3 =⇒ αx1 = α(5x3)

=⇒ αx1 = 5(αx3)

Thus, αx = (αx1, αx2, αx3) ∈ U . Therefore, U is a subspace of F3.

Exercise 2

Verify all assertions about subspaces in Example 1.35:

(a) If b ∈ F, then
{(x1, x2, x3, x4) ∈ F4 : x3 = 5x4 + b}

is a subspace of F4 if and only if b = 0.

(b) The set of continuous real-valued functions on the interval [0,1] is a subspace
of R[0,1].

(c) The set of di�erentiable real-valued functions on R is a subspace of RR.

(d) The set of di�erentiable real-valued functions f on the interval (0,3) such that
f ′(2) = b is a subspace of R(0,3) if and only if b = 0.

(e) The set of all sequences of complex numbers with limit 0 is a subspace of C∞.

Solution

(a) De�ne Ub = {(x1, x2, x3, x4) ∈ F4 : x3 = 5x4 + b} for all b ∈ F and suppose
�rst that U is a subspace of F4, then it must contain the zero vector. Hence,
since (0, 0, 0, 0) ∈ U , then by de�nition:

0 = 5 · 0 + b

which is equivalent to b = 0.
For the converse, let's show that U0 is a subspace of F4. Since 0 = 5 · 0, then
0 = (0, 0, 0, 0) ∈ U0. If x = (x1, x2, x3, x4) and y = (y1, y2, y3, y4) are arbitrary
elements of U0, then x3 = 5x4 and y3 = 5y4. By adding these two equations
and by distributivity, we get

x3 + y3 = 5(x4 + y4)

which implies that x+y ∈ U0. Similarly, if x = (x1, x2, x3, x4) ∈ U0 and α ∈ F,
then we get

x3 = 5x4 =⇒ αx3 = 5(αx4)

which implies that αx ∈ U0. Thus, U0 is a subspace of F4. Therefore, Ub is a
subspace of F4 if and only if b = 0.
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(b) Let C denote the set of real-valued continuous functions on the interval [0,1]
and 0R[0,1] the zero function which acts as the additive identity in R[0,1]. Since
the constant zero function is continuous, then 0R[0,1] ∈ C. Similarly, since
the sum of two continuous functions is continuous and the multiplication of a
continuous function with a scalar is still continuous, then C is closed under
addition and scalar multiplication. Therefore, C is a subspace of R[0,1].

(c) The proof is similar to part (b). The constant zero function is di�erentiable
on R. Moreover, di�erentiable functions are closed under addition and scalar
multiplication. Therefore, the set of di�erentiable real-valued functions on R
is a subspace of RR.

(d) De�ne Ub = {f : (0, 3) → R di�erentiable : f ′(2) = b} for all b ∈ R. Suppose
that Ub is a subspace of R(0,3), then we must have 0(0,3) ∈ Ub where 0(0,3)
denotes the constant zero function on (0,3). By de�nition of Ub, it implies
that 0′(0,3)(2) = b. However, we know that 0′(0,3)(2) = 0. Thus, b = 0.

Conversely, let's show that U0 is a subspace of R(0,3). First, the constant
zero function 0R(0,3) on (0,3) which acts as the additive identity in R(0,3), is
di�erentiable on (0,3) and its derivative at 2 is 0. Hence, 0R(0,3) ∈ U0. Now,
let f, g ∈ U0, then f + g is di�erentiable on (0,3) and

(f + g)′(2) = f ′(2) + g′(2) = 0 + 0 = 0

so f + g ∈ U0. Similarly, for any f ∈ U0 and α ∈ F, the function αf is still
di�erentiable on (0,3) and

(αf)′(2) = αf ′(2) = α · 0 = 0

so αf ∈ U0. Thus, U0 is a subspace of R(0,3). Therefore, Ub is a subspace if
and only if b = 0.

(e) Let S be the set of sequences of complex numbers with limit 0. Since the addi-
tive identity (0, 0, ...) of C∞ converges to 0, then it is in S. Let (an)n, (bn)n ∈ S,
then

lim
n→∞

an = 0 and lim
n→∞

bn = 0

which implies

lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn = 0 + 0 = 0

Thus, (an)n + (bn)n ∈ S. Similarly, for all (an)n ∈ S and α ∈ C, we have

lim
n→∞

αan = α lim
n→∞

an = α · 0 = 0

so α(an)n ∈ S. Therefore, S is a subspace of C∞.

Exercise 3

Show that the set of di�erentiable real-valued functions f on the interval (-4, 4) such
that f ′(−1) = 3f(2) is a subspace of R(−4,4).
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Solution

De�ne the set U = {f : (−4, 4) → R di�erentiable : f ′(−1) = 3f(2)} and let's
show that it is a subspace of R(−4,4). First, denote by f0 to constant zero function on
(−4, 4) which is also the additive identity inR(−4,4). We know that f0 is di�erentiable
on (−4, 4) with f ′

0 = f0. Hence, f
′
0(−1) = 0 = 3f0(2) which proves that f0 ∈ U .

To show that it is closed under addition, let f, g ∈ U , then by de�nition, f and g
are di�erentiable on (-4, 4) and{

f ′(−1) = 3f(2)

g′(−1) = 3g(2)

If we add these two equations, we get

(f + g)′(−1) = 3(f + g)(2)

which proves that f + g ∈ U since f + g is di�erentiable on (-4, 4).
To prove that it is closed under scalar multiplication, let f ∈ U and α ∈ R, then

f ′(−1) = 3f(2) =⇒ αf ′(−1) = α · 3f(2)
=⇒ (αf)′(−1) = 3(αf)(2)

which proves that αf ∈ U since αf is di�erentiable on (-4, 4). Therefore, U is a
subspace of R(−4,4).

Exercise 4

Suppose b ∈ R. Show that the set of continuous real-valued functions f on the
interval [0, 1] such that

∫ 1

0
f = b is a subspace of R[0,1] if and only if b = 0.

Solution

Let b ∈ R and de�ne I = {f : [0, 1] → R continuous :
∫ 1

0
f = b}. Suppose that I is

a subspace of R[0,1], then the additive identity 0 : x 7→ 0 must be in I so
∫ 1

0
0 = b.

But we know that
∫ 1

0
0 = 0 so it follows that b = 0.

Conversly, let's show that I is a subspace of R[0,1] when b = 0. First, the additive
identity 0 is obviously continuous with

∫ 1

0
0 = 0 so 0 ∈ I. Now, let f, g ∈ I, then f

and g are continuous and ∫ 1

0

f =

∫ 1

0

g = 0

It follows that f + g is a continuous function that satis�es∫ 1

0

(f + g) =

∫ 1

0

f +

∫ 1

0

g = 0

Hence, f + g ∈ I. Similarly, if f ∈ I and α ∈ R, then f is continuous and∫ 1

0

f = 0

which implies that αf is also continuous and∫ 1

0

(αf) = α

∫ 1

0

f = α · 0 = 0
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Hence, αf ∈ I. Therefore, I is a subspace of R[0,1].

Exercise 5

Is R2 a subspace of the complex vector space C2?

Solution

No, it isn't because it is not closed under scalar multiplication since the scalars are
complex numbers. For example, (1, 1) ∈ R2 but i(1, 1) = (i, i) /∈ R2. Therefore, R2

is not a subspace of the complex vector space C2.

Exercise 6

(a) Is {(a, b, c) ∈ R3 : a3 = c3} a subspace of R3?

(b) Is {(a, b, c) ∈ C3 : a3 = c3} a subspace of C3?

Solution

(a) In R, the function x 7→ x3 is bijective so if we de�ne I = {(a, b, c) ∈ R3 : a3 =
c3}, then we actually have I = {(a, b, c) ∈ R3 : a = c}. Hence, it is easier
now to show that I is a subspace of R3. Obviously, (0, 0, 0) ∈ I since 0 = 0.
Moreover, if (x1, x2, x3) and (y1, y2, y3) are in I, then x1 = x3 and y1 = y3
which implies that x1 + y1 = x3 + y3. Hence, (x1 + y1, x2 + y2, x3 + y3) in in I.
Similarly, for (x1, x2, x3) ∈ I and α ∈ R, we must have x1 = x3 which implies
that αx1 = αx3. Thus, (αx1, αx2, αx3) ∈ I. Therefore, I is a subspace of R3.

(b) If we let I = {(a, b, c) ∈ R3 : a3 = c3}, notice that (−1+
√
3i

2
, 0, 1) and

(−1−
√
3i

2
, 0, 1) are both elements of I. However, their sum is not in I since(

−1 +
√
3i

2
, 0, 1

)
+

(
−1−

√
3i

2
, 0, 1

)
= (−1, 0, 2) /∈ I

Therefore, it is not a subspace of C3 since it is not closed under addition.

Exercise 7

Prove or give a counterexample: If U is a nonempty subset of R2 such that U is
closed under addition and under taking inverses (meaning −u ∈ U whenever u ∈ U),
then U is a subspace of R2.

Solution

Consider the set U = {(k, k) : k ∈ Z} which is obviously closed under addition and
taking inverses. Notice that U is not a subspace because it is not closed under scalar
multiplication: (1, 1) ∈ U and π ∈ R but π(1, 1) = (π, π) /∈ U .

Exercise 8

Give an example of a nonempty subset U of R2 such that U is closed under scalar
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multiplication, but U is not a subspace of R2.

Solution

Consider the set U = {(x, y) ∈ R2 : xy ≥ 0}, let's �rst show that it is closed under
scalar multiplication. Given (x, y) ∈ U and α ∈ R, we know by de�nition of U tht
xy ≥ 0. Moreover, since α is a real number, then α2 ≥ 0. Hence,

(αx)(αy) = α2xy ≥ 0

Thus, (αx, αy) ∈ U so U is indeed closed under scalar multiplication. To show
that U is not a subspace, consider the elements (−1, 0) and (0, 1) in U and notice
that their addition cannot be in U since (−1) · 1 ̸≥ 0. Thus, U is not closed under
addition which proves that it is not a subspace.

Exercise 9

A function f : R → R is called periodic if there exists a positive number p such
that f(x + p) = f(x) for all x ∈ R. Is the set of periodic functions from R to R a
subspace of RR? Explain.

Solution

Let's prove that this set is not a subspace of RR by showing that it is not closed
under addition. To do so, consider the functions x 7→ cos(x) and x 7→ cos(πx)
de�ned on R. Obviously, both are periodic since the �rst one has period 2π and the
second one has period 2. Consider their sum f : cos(x) + cos(πx) and suppose by
contradiction that there exists a p > 0 such that

f(x) = f(x+ p) (1)

for all x ∈ R. Notice that

f(x) = 2 =⇒ cos(x) + cos(πx) = 2

=⇒ cos(x) = 1 and cos(πx) = 1

=⇒ x ∈ 2πZ and x ∈ 2Z

=⇒ x = 0

Hence, f is equal to 2 if and only if x = 0. Thus, if we plug-in x = 0 in equation
(1), we get

f(p) = f(0) = 2

which implies that p = 0, a contradiction since p > 0. Therefore, f is not periodic
which proves that periodic functions are not closed under addition. With a similar
argument, periodic functions are not closed under multiplication either.

Exercise 10

Suppose V1 and V2 are subspaces of V . Prove that V1 ∩ V2 is a subspace of V .

Solution

Let's show that V1 ∩ V2 satis�es the three subspace conditions:

� (additive identity) Since V1 and V2 are subspaces, then they both contain
the additive identity 0 of V . It follows that 0 ∈ V1 ∩V2 since it is contained in
both sets.
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� (closed under addition) Let u and v be two vectors in V1∩V2, then u and v
must be contained in V1. Since V1 is a subspace, then it is closed under addition
so u+ v must also be an element of V1. Similarly, u and v are contained in V2

so for the same reasons, u+ v must be an element of V2. Thus, u+ v ∈ V1∩V2

since u+ v ∈ V1 and u+ v ∈ V2.

� (closed under scalar multiplication) Let a ∈ F and u ∈ V1 ∩ V2, then u
must be contained in V1. Since V1 is a subspace, then it is closed under scalar
multiplication so au must also be an element of V1. Similarly, u is contained
in V2 so for the same reasons, au must be an element of V2. Thus, au ∈ V1∩V2

since au ∈ V1 and au ∈ V2.

Therefore, V1 ∩ V2 is a subspace of V .

Exercise 11

Prove that the intersection of every collection of subspaces of V is a subspace of V .

Solution

Let {Vi}i∈I be an arbitrary collection of subspaces of V , let's show that ∩i∈IVi is
also a subspace of V by proving the three subspace conditions:

� (additive identity) Since Vi is a subspace of V , then 0 ∈ Vi for all i ∈ I. It
follows that 0 ∈ ∩i∈IVi.

� (closed under addition) Let u and v be two vectors in ∩i∈IVi, then u and
v must be contained in Vi for all i ∈ I. For any i ∈ I, Vi is a subspace so it is
closed under addition, hence u+ v ∈ Vi. It follows that u+ v ∈ ∩i∈IVi.

� (closed under scalar multiplication) Let a ∈ F and v ∈ ∩i∈I . For all i ∈ I,
since u ∈ Vi and Vi is a subspace, then au ∈ Vi. It follows that au ∈ ∩i∈IVi

since au ∈ Vi for all i ∈ I.

Therefore, ∩i∈IVi is a subspace of V .

Exercise 12

Prove that the union of two subspaces of V is a subspace of V if and only if one of
the subspaces is contained in the other.

Solution

Let V1 and V2 be subspaces of V . If V1 ⊂ V2 or V2 ⊂ V1, then V1 ∪ V2 must be a
subspace of V as well. To show the converse, suppose now that V1∪V2 is a subspace
of V and that V1 ̸⊂ V2. Then there exists a vector u1 ∈ V1 such that u1 /∈ V2. Let's
prove that V2 ⊂ V1 in that case. Let v ∈ V2 be arbitrary, since u1 and v are both
vectors in V1 ∪V2, then u1 + v ∈ V1 ∪V2 since it is a subspace. But this implies that
u1 + v is either in V1 or in V2. If u1 + v ∈ V2, then we must have

u1 = (u1 + v)− v ∈ V2

since v ∈ V2 and V2 is a subspace. A contradiction since u1 /∈ V2. It follows that
u1 + v ∈ V1. But again, since V1 is a subspace and u1 ∈ V1, then

v = (u1 + v)− u1 ∈ V1
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which proves that V2 ⊂ V1. Therefore, if V1 ∪ V2 is a subspace, then we either have
V1 ⊂ V2 or V2 ⊂ V1.

Exercise 13

Prove that the union of three subspaces of V is a subspace of V if and only if one
of the subspaces contains the other two.

Solution

Let V1, V2 and V3 be three subspaces of V . Obviously, if one contains the other two,
then V1 ∪ V2 ∪ V3 is also a subspace of V since it is either equal to V1, V2 or V3.
To show the converse, suppose that V1 ∪ V2 ∪ V3 is a subspace of V . To prove that
one subspace contains the other two, suppose that V1 ̸⊃ V2 ∪ V3 and V2 ̸⊃ V1 ∪ V3,
then it su�ces to show that V3 contains V1 ∪ V2. Notice that V1 ̸⊃ V2 ∪ V3 and
V2 ̸⊃ V1 ∪ V3 implies the existence of vectors v1, v2 ∈ V such that{

v1 ∈ V1 ∪ V3

v1 /∈ V2

and

{
v2 ∈ V2 ∪ V3

v2 /∈ V1

To show that V3 ⊃ V1 ∪ V2, let's proceed by cases:

� Suppose that V1∪V2 ≤ V , then by the previous exercise, we must have V1∪V2 ⊂
V3 or V3 ≤ V1∪V2. By contradiction, suppose that V3 ⊂ V1∪V2. Since V1∪V2 ≤
V , then again, by the previous exercise, V1 ⊂ V2 or V2 ⊂ V1. If V1 ⊂ V2, then
v1 ∈ V1 ∪ V3 ⊂ V2 ∪ V3. But, v1 /∈ V2 so v1 ∈ V3. However, V3 ⊂ V1 ∪ V2 = V2

so v1 ∈ V2. A contradiction that shows that V1 ̸⊂ V2. Similarly, we can prove
in the same way using v2 that V2 ⊂ V1. Thus, by contradiction, we get that
V3 is not a subset of V1 ∪ V2. It follows that V1 ∪ V2 ⊂ V3.

� Suppose now that V1∪V2 is not a subspace of V , then by the previous exercise,
V1 ̸⊂ V2 and V2 ̸⊂ V1. It follows that there exist vectors u1, u2 ∈ V such that{

u1 ∈ V1

u1 /∈ V2

and

{
u2 ∈ V2

u2 /∈ V1

Consider now the vector α1u1 + α2u2 where α1 and α2 are non-zero scalars.
Since α1u1 ∈ V1 ⊂ V1 ∪ V2 ∪ V3, α2u2 ∈ V2 ⊂ V1 ∪ V2 ∪ V3 and V1 ∪ V2 ∪ V3 is
a subspace of V , then α1u1 + α2u2 ∈ V1 ∪ V2 ∪ V3. If α1u1 + α2u2 ∈ V1, then
using the fact that α1u1 ∈ V1 and that V1 is a subspace gives us

α2u2 = (α1u1 + α2u2)− α1u1 ∈ V1

Multiplying by α−1
2 implies that u2 ∈ V1, a contradiction. Similarly, if α1u1 +

α2u2 ∈ V2, then we can show in the same way that u1 ∈ V2, another contra-
diction. Thus, we must have α1u1 + α2u2 ∈ V2.
Using the fact that 2 ̸= 0, we get that u1 + u2, 2u1 + u2 and u1 + 2u2 are in
V3. Thus,

u1 = (2u1 + u2)− (u1 + u2) ∈ V3

and
u2 = (u1 + 2u2)− (u1 + u2) ∈ V3

We are now ready to show that V1 ∪ V2 ⊂ V3 in that case. To do so, let
w ∈ V1 ∪ V2 and proceed again by cases:
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� Suppose that w ∈ V1 \ V2 and consider the vector w + u2 ∈ V1 ∪ V2 ∪ V3.
If w + u2 ∈ V1, then u2 ∈ V1, a contradiction. Similarly, if w + u2 ∈ V2,
then w ∈ V2, a contradiction. Hence, w + u2 ∈ V3. But since u2 ∈ V3,
then w ∈ V3.

� Suppose that w ∈ V2 \ V1 and consider the vector w + u1 ∈ V1 ∪ V2 ∪ V3.
If w + u1 ∈ V1, then w ∈ V1, a contradiction. Similarly, if w + u1 ∈ V2,
then u1 ∈ V2, a contradiction. Hence, w + u1 ∈ V3. But since u1 ∈ V3,
then w ∈ V3.

� Suppose that w ∈ V1∩V2 and consider the vector w+u1+u2 ∈ V1∪V2∪V3.
If w+u1+u2 ∈ V1, then u2 ∈ V1, a contradiction. Similarly, if w+u1+u2 ∈
V2, then u1 ∈ V2, a contradiction. Hence, w + u1 + u2 ∈ V3. But since
u1 + u2 ∈ V3, then w ∈ V3.

Thus, V1 ∪ V2 ⊂ V3.

Hence, in all possible cases, we get that V1 ∪ V2 ⊂ V3. Therefore, the union of three
subspaces is a subspace if and only if one of the subspaces contains the other two.

Exercise 14

Suppose

U = {(x,−x, 2x) ∈ F3 : x ∈ F} and W = {(x, x, 2x) ∈ F3 : x ∈ F}

Describe U +W using symbols, and also give a description of U +W that uses no
symbols.

Solution

By de�nition, we have

U +W = {(x,−x, 2x) ∈ F3 : x ∈ F}+ {(x, x, 2x) ∈ F3 : x ∈ F}
= {(x+ y,−x+ y, 2x+ 2y) ∈ F3 : x, y ∈ F}
= {(x+ y,−x+ y, 2(x+ y) ∈ F3 : x, y ∈ F}

From this expression, let's prove that

U +W = {(a, b, 2a) ∈ F3 : a, b ∈ F}

Obviously, U +W ⊂ {(a, b, 2a) ∈ F3 : a, b ∈ F} because for any vector (x+ y,−x+
y, 2(x + y) ∈ F3, if we let a = x + y and b = −x + y, we can rewrite this vector as
(a, b, 2a) which is in {(a, b, 2a) ∈ F3 : a, b ∈ F}. Similarly, given an arbitrary vector
(a, b, 2a) ∈ F3, if we let

x =
a− b

2
and y =

x+ y

2

then we can rewrite the vector as (x + y,−x + y, 2(x + y)) which is obviously in
U +W . It follows that the sets are equal. Without symbols, this just means that
U +W is precisely the set of vectors in V such that the third component is twice
the �rst component.
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Exercise 15

Suppose U is a subspace of V . What is U + U?

Solution

Let's show that U = U + U . An arbitrary element in U + U is of the form x + y
where x and y are in U . Since U is a subspace, then it is closed under addition
which implies that x+ y ∈ U . It follows that U + U ⊂ U .
For the reverse inclusion, take an arbitrary u ∈ U and notice that we can write
u = u + 0. Again, since U is a subspace of V , then 0 ∈ V . Thus, in the expression
u+0, both vectors are in U . It follows that u = u+0 ∈ U+U . Therefore, U = U+U .

Exercise 16

Is the operation of addition on the subspaces of V commutative? In other words, if
U and W are subspaces of V , is U +W = W + U?

Solution

Let U and W be subspaces of V . Then by commutativity of addition in V , we get

U +W = {u+ w : u ∈ U and w ∈ W}
= {w + u : w ∈ W and u ∈ U}
= W + U

Therefore, the operation of addition on subspaces of V is commutative.

Exercise 17

Is the operation of addition on the subspaces of V associative? In other words, if
V1, V2 and V3 are subspaces of V , is

(V1 + V2) + V3 = V1 + (V2 + V3)?

Solution

Let V1, V2 and V3 are subspaces of V and let's show that

(V1 + V2) + V3 = V1 + (V2 + V3)

First, take an arbitrary x+ y ∈ (V1 + V2) + V3 where x ∈ V1 + V2 and y ∈ V3. Since
x ∈ V1 + V2, then there exist vectors a ∈ V1 and b ∈ V2 such that x = a + b. It
follows from the associativity of addition in V that

x+ y = (a+ b) + y = a+ (b+ y)

Since b ∈ V2 and y ∈ V3, then b+y ∈ V2+V3. Hence, a+(b+y) ∈ V1+(V2+V3) using
the fact that a ∈ V1. Thus, the arbitrary x+ y ∈ (V1 + V2) + V3 is in V1 + (V2 + V3)
as well so

(V1 + V2) + V3 ⊂ V1 + (V2 + V3)

The reverse inclusion has the same proof. The desired equality follows.
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Exercise 18

Does the operation of addition on subspaces of V have an additive identity? Which
subspaces have additive inverses?

Solution

First, let's show that indeed, the operation of addition on subspaces of V has an
additive identity. De�ne I = {0}, the subspace of V containing the zero vector only.
Take an arbitrary subspace U of V and notice that

U + I = {u+ i : u ∈ U and i ∈ I}
= {u+ 0 : u ∈ U and i ∈ I}
= {u : u ∈ U}
= U

By commutativity of addition of subspaces of V , we also have I+U = U . Therefore,
I is an additive identity for the addition on subspaces of V .
Concerning additive inverses, let's determine which subspaces of V have an additive
inverse by taking an arbitrary subspace U of V and supposing that there is a subspace
W of V such that V +W = I. Since W is a subspace of V , then 0 ∈ W . It follows
that for all u ∈ U ,

u = u+ 0 ∈ U +W = I = {0}

In other words, U = {0} = I. Since I obviously has an additive inverse (itself),
then the unique subspace having an additive inverse is I.

Exercise 19

Prove or give a counterexample: If V1, V2, U are subspaces of V such that

V1 + U = V2 + U,

then V1 = V2.

Solution

Consider the following counterexample. Let V1 = U = V and V2 = {0}. We know
from Exercise 15 of this section that

V1 + U = V + V = V

Moreover, from Exercise 19, we also have

V2 + U = {0}+ V = V

Thus,
V1 + U = V2 + U

but V1 ̸= V2.

Exercise 20

Suppose
U = {(x, x, y, y) ∈ F4 : x, y ∈ F}.
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Find a subspace W of F4 such that F4 = U ⊕W .

Solution

Consider the subspace

W = {(0, a, 0, b) ∈ F4 : a, b ∈ F}

and the sum U+W . First, let's show that the sum is direct by proving that (0, 0, 0, 0)
has a unique representation in this sum. Suppose (x, x, y, y) ∈ U and (0, a, 0, b) ∈ W
satisfy

(0, 0, 0, 0) = (x, x, y, y) + (0, a, 0, b)

This is equivalent to the system of equation
x = 0

a+ x = 0

y = 0

b+ y = 0

which clearly has the following unique solution
x = 0

a = 0

y = 0

b = 0

Therefore, in U + W , the zero vector can only be written as the sum of two zero
vectors. It follows that the sum is direct.
Let's now show that U ⊕ W = F4 by taking an arbitrary vector (x1, x2, x3, x4).
Consider the vectors

u = (x1, x1, x3, x3) ∈ U and w = (0, x2 − x1, 0, x4 − x3) ∈ W

and notice that

u+ w = (x1, x1, x3, x3) + (0, x2 − x1, 0, x4 − x3)

= (x1, x1 + x2 − x1, x3, x3 + x4 − x3)

= (x1, x2, x3, x4)

which shows that (x1, x2, x3, x4) ∈ U ⊕ W . Thus, F4 ⊂ U ⊕ W . Since U and W
are subspaces of F4, then U ⊕ W must also be a subspace of F4: U ⊕ W ⊂ F4.
Therefore, we get U ⊕W = F4.

Exercise 21

Suppose
U = {(x, y, x+ y, x− y, 2x) ∈ F5 : x, y ∈ F}.

Find subspace W of F5 such that F5 = U ⊕W .
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Solution

Consider the subspace

W = {(0, 0, a, b, c) ∈ F5 : a, b, c ∈ F}

and consider the sum U + W . Let's �rst prove that it is actually a direct sum by
focusing on the vector zero. Let (x, y, x+ y, x− y, 2x) ∈ U and (0, 0, a, b, c) ∈ W be
two vectors such that

(0, 0, 0, 0) = (x, y, x+ y, x− y, 2x) + (0, 0, a, b, c)

This translates to the following system of equation:

x = 0

y = 0

x+ y + a = 0

x− y + b = 0

2x+ c = 0

which is equivalent to 

x = 0

y = 0

a = 0

b = 0

c = 0

Therefore, since the zero vector can only be written as the sum of two zero vectors,
the sum is direct.
Let's now show that U ⊕W = F5. Obviously, since U ⊕W is a subspace of F5, we
have U ⊕W ⊂ F5. Moreover, for any (x1, x2, x3, x4, x5) ∈ F5, we have

(x1, x2, x3, x4, x5)

= (x1, x2, [x1 + x2] + [x3 − x2 − x1], [x1 − x2] + [x4 + x2 − x1], 2x1 + [x5 − 2x1])

= (x1, x2, x1 + x2, x1 − x2, 2x1) + (0, 0, x3 − x2 − x1, x4 + x2 − x1, x5 − 2x1)

= (x, y, x+ y, x− y, 2x) + (0, 0, a, b, c)

∈ U ⊕W

where x = x1, y = x2, a = x3 − x2 − x1, b = x4 + x2 − x1 and c = x5 − 2x1. Thus,
F5 ⊂ U ⊕W . Therefore, U ⊕W = F5.

Exercise 22

Suppose
U = {(x, y, x+ y, x− y, 2x) ∈ F5 : x, y ∈ F}.

Find three subspaces W1, W2, W3 of F5, none of which equals {0}, such that
F5 = U ⊕W1 ⊕W2 ⊕W3.
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Solution

Consider the subspaces

W1 = {(0, 0, a, 0, 0) ∈ F5 : a ∈ F}
W2 = {(0, 0, 0, b, 0) ∈ F5 : b ∈ F}
W3 = {(0, 0, 0, 0, c) ∈ F5 : c ∈ F}

and their sum U +W1 +W2 +W3. Let's �rst prove that it is actually a direct sum
by focusing on the zero vector. Let

u = (x, y, x+ y, x− y, 2x) ∈ U

w1 = (0, 0, a, 0, 0) ∈ W1

w2 = (0, 0, 0, b, 0) ∈ W2

w3 = (0, 0, 0, 0, c) ∈ W3

be arbitrary vectors in their respective sets such that

(0, 0, 0, 0, 0) = u+ w1 + w2 + w3

This can be rewritten into the following system of equation:

x = 0

y = 0

x+ y + a = 0

x− y + b = 0

2x+ c = 0

which is equivalent to 

x = 0

y = 0

a = 0

b = 0

c = 0

Hence, u = w1 = w2 = w3 = (0, 0, 0, 0, 0). Therefore, since the zero vector can only
be written as the sum of zero vectors, the sum is direct.
Let's now show that U ⊕ W1 ⊕ W2 ⊕ W3 = F5. Obviously, since U ⊕ W1 ⊕ W2 ⊕
W3 is a subspace of F5, we have U ⊕ W1 ⊕ W2 ⊕ W3 ⊂ F5. Moreover, for any
(x1, x2, x3, x4, x5) ∈ F5, we have

(x1, x2, x3, x4, x5)

= (x1, x2, [x1 + x2] + [x3 − x2 − x1], [x1 − x2] + [x4 + x2 − x1], 2x1 + [x5 − 2x1])

= (x1, x2, x1 + x2, x1 − x2, 2x1) + (0, 0, x3 − x2 − x1, x4 + x2 − x1, x5 − 2x1)

= (x, y, x+ y, x− y, 2x) + (0, 0, a, b, c)

= (x, y, x+ y, x− y, 2x) + (0, 0, a, 0, 0) + (0, 0, 0, b, 0) + (0, 0, 0, 0, c)

∈ U ⊕W
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where x = x1, y = x2, a = x3 − x2 − x1, b = x4 + x2 − x1 and c = x5 − 2x1. Thus,
F5 ⊂ U ⊕W1 ⊕W2 ⊕W3. Therefore, U ⊕W1 ⊕W2 ⊕W3 = F5.

Exercise 23

Prove or give a counterexample: If V1, V2, U are subspaces of V such that

V = V1 ⊕ U and V = V2 ⊕ U,

then V1 = V2.

Solution

Consider the following counterexample:

V = R2

V1 = {(0, x) : x ∈ R}
V2 = {(x, x) : x ∈ R}
U = {(x, 0) : x ∈ R}

I will not prove that V1, V2 and U are subspaces of V because it is not goal of this
exercice. Notice that

V1 + U = {(x, y) : x, y ∈ R} = R2 = V

Moreover, for any arbitrary u = (0, y) ∈ V1 and y = (x, 0) ∈ U , if

(0, 0) = u+ v = (x, y)

then it follows that u = v = (0, 0) since x = y = 0. Hence, V1 ⊕ U = V . Similarly,
let's show that V2 ⊕ U = V . To do so, let's �rst prove that V2 + U = V . Since
V2 +U ⊂ V , it su�ces to prove that V ⊂ V2 +U . Let (a, b) be an arbitrary element
in V , then we have

(x, y) = (x− y, 0) + (y, y) ∈ V2 + U

Hence, V2 + U = V . To prove that the sum is direct, let (x, x) ∈ V2 and (y, 0) ∈ U
such that

(x+ y, x) = (x, x) + (y, 0) = (0, 0)

Since it follows that x = 0 and y = 0, then it follows that the zero vector can only
be written as a sum of two zero vectors in V2 + U . Thus, V2 ⊕ U = V . However,
notice that V1 ̸= V2 since (1, 1) ∈ V2 but (1, 1) /∈ V1.

Exercise 24

A function f : R → R is called even if

f(−x) = f(x)

for all x ∈ R. A function f : R → R is called odd if

f(−x) = −f(x)

for all x ∈ R. Let Ve denote the set of real-valued even functions on R and Vo

denote the set of real-valued odd functions on R. Show that RR = Ve ⊕ Vo.



CHAPTER 1. VECTOR SPACES 31

Solution

First, let's show that RR = Ve ⊕ Vo. Since Ve ⊕ Vo ⊂ RR, then it su�ces to prove
that RR ⊂ Ve ⊕ Vo. Given an arbitrary function f ∈ RR, de�ne

fe(x) =
f(x) + f(−x)

2
and fo(x) =

f(x)− f(−x)

2

for all x ∈ R. Notice that for all x ∈ R, we have

fe(−x) =
f((−x)) + f(−(−x))

2

=
f(−x) + f(x)

2
= fe(x)

and

fo(−x) =
f((−x))− f(−(−x))

2

=
f(−x)− f(x)

2

= −f(x)− f(−x)

2
= fo(x)

which proves that fe ∈ Ve and fo ∈ Vo. Moreover, for all x ∈ R

fe(x) + fo(x) =
f(x) + f(−x)

2
+

f(x)− f(−x)

2
= f(x)

so f = fe + fo ∈ Ve + Vo. Therefore, RR = Ve + Vo since we just proved that
RR ⊂ Ve+Vo. Let's now show that the sum is direct by proving that the zero function
can be represented as fe + fo where fe ∈ Ve and fo ∈ Vo only when fe = fo ≡ 0. To
prove this, consider two arbitray functions fe ∈ Ve and fo ∈ Vo such that

fe(x) + fo(x) = 0

for all x ∈ R. Then, given any y ∈ R, we have

fe(y) + fo(y) = 0

and
fe(−y) + fo(−y) = 0 =⇒ fe(y)− fo(y) = 0

by plugging-in x = y and x = −y into our previous equation. Adding the two
equations gives us

[fe(y) + fo(y)] + [fe(y)− fo(y)] = 0 =⇒ 2fe(y) = 0

=⇒ fe(y) = 0

It follows that fo(y) = 0 as well since fe(y) + fo(y) = 0. Thus, since it holds for all
y ∈ R, then fe = fo ≡ 0. Therefore, RR = Ve ⊕ Vo.



Chapter 2

Finite-Dimensional Vector Spaces

2A Span and Linear Independence

Exercise 1

Find a list of four distinct vectors in F3 whose span equals

{(x, y, z) ∈ F3 : x+ y + z = 0}.

Solution

Consider the following list of vectors: (−1, 0, 1), (0,−1, 1), (1, 1,−2) and (−1, 1, 0).
To prove that it spans the given set, take an arbitrary (x, y, z) ∈ F3 such that
x+ y + z = 0 and notice that

(x, y, z) = (−x)(−1, 0, 1) + (−y)(0,−1, 1) + 0(1, 1,−2) + 0(−1, 1, 0)

Hence, the given set is in the span of the four vectors. Moreover, any element is the
span of the four vectors is in the given set since the four vectors are in the set and
the set is closed under linear combinations.

Exercise 2

Prove or give a counterexample: If v1, v2, v3, v4 spans V , then the list

v1 − v2, v2 − v3, v3 − v4, v4

also spans V .

Solution

Let's prove it. De�ne the vectors

u1 = v1 − v2

u2 = v2 − v3

u3 = v3 − v4

u4 = v4

and B as the set containing these four vectors. To show that B spans V , we need to
prove that for any element v ∈ V , there exists a linear combination of the elements

32
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in B equal to v. To do so, let v ∈ V , since v1, v2, v3, v4 spans V , then there exist
coe�cients α1, α2, α3, α4 ∈ F such that

v = α1v1 + α2v2 + α3v3 + α4v4

Now, notice that we can write v1 as u1+u2+u3+u4, v2 as u2+u3+u4, v3 as u3+u4

and v4 simply as u4. Hence:

v = α1v1 + α2v2 + α3v3 + α4v4

= α1(u1 + u2 + u3 + u4) + α2(u2 + u3 + u4) + α3(u3 + u4) + α4u4

= α1u1 + (α1 + α2)u2 + (α1 + α2 + α3)u3 + (α1 + α2 + α3 + α4)u4

Thus, we get that v can be written as a linear combination of the vectors in B.
Therefore, B spans V .

Exercise 3

Suppose v1, ..., vm is a list of vectors in V . For k ∈ {1, ...,m}, let

wk = v1 + ...+ vk.

Show that span(v1, ..., vm) = span(w1, ..., wm).

Solution

First, notice that for all k ∈ {2, ...,m}, we have

vk = wk − wk−1 ∈ span(w1, ..., wm)

(for k = 1, v1 = w1 ∈ span(w1, ..., wm)). Hence, since span(v1, ..., vm) is the smallest
subspace containing the vectors v1, ..., vm, and span(w1, ..., wm) is a subspace that
contains the vectors v1, ..., vm, then span(v1, ..., vm) ⊂ span(w1, ..., wm).
Similarly, by de�nition, for all k ∈ {1, ...,m}, we have

wk = v1 + ...+ vk ∈ span(v1, ..., vm)

Hence, since span(w1, ..., wm) is the smallest subspace containing the vectors w1, ..., wm,
and span(v1, ..., vm) is a subspace that contains the vectors w1, ..., wm, then span(w1, ..., wm) ⊂
span(v1, ..., vm). Therefore, span(v1, ..., vm) = span(w1, ..., wm).

Exercise 4

(a) Show that a list of length one in a vector space is linearly independent if and
only if the vector in the list is not 0.

(b) Show that a list of length two in a vector space is linearly independent if and
only if neither of the two vectors in the list is a scalar multiple of the other.

Solution
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(a) Consider the list containing the single vector v0. By de�nition, the list is
linearly independent if and only if the only choice of scalars in a linear combi-
nation of the vectors in the list that is equal to zero is all of the scalars being
equal to zero. In our case, this is equivalent to saying that αv0 = 0 only when
α = 0. However, if it holds, then v0 cannot be the zero vector since otherwise,
αv0 = 0 even when α ̸= 0. Similarly, if v0 is not the zero vector then αv0 = 0
can only happen when α = 0. Thus, αv0 = 0 only when α = 0 is equivalent to
v0 ̸= 0. Therefore, the list is linearly independent if and only if v0 is not the
zero vector.

(b) For this one, let's prove the converse equivalence: the list is linearly dependent
if and only if one vector is a scalar multiple of the other. To do so, suppose
that the list is linearly dependent, then there exist scalars α, β ∈ F such that

αv1 + βv2 = 0

but not all scalars are zero. Suppose without loss of generality that α ̸= 0,
then we can rewrite the previous equation as

v1 = −β

α
v2

Thus, v1 is a scalar multiple of v2.
For the reverse implication, suppose that one of the vectors is a multiple of
the other. Without loss of generality, suppose that v1 is a scalar multiple of
v2, then there exists a scalar α ∈ F such that v1 = αv2. But notice that we
can rewrite the previous equation as follows:

(1)v1 + (−α)v2 = 0

Since 1 ̸= 0, then there exists a non-trivial linear combination of the vectors
in that list that is equal to zero. Thus, the list is linearly dependent.

Exercise 5

Find a number t such that

(3, 1, 4), (2,−3, 5), (5, 9, t)

is not linearly independent in R3.

Solution

If we take t = 55/2, then we can write the vector (5, 9, t) as α(3, 1, 4) + β(2,−3, 5)
where α = 15/2 and β = −1/2. Hence,

α(3, 1, 4) + β(2,−3, 5) + (−1)(5, 9, t) = 0

is a non-trivial linear combination. Thus, with such a value of t, the three vectors
are not linearly independent.

Exercise 6

Show that the list (2,3,1), (1,-1,2),(7,3,c) is linearly dependent in F3 if and only if
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c = 8.

Solution

( =⇒ ) Suppose that the list (2,3,1), (1,-1,2),(7,3,c) is linearly dependent in F3, then
there exist scalars α, β, γ ∈ F not all zero such that

α(2, 3, 1) + β(1,−1, 2) + γ(7, 3, c) = 0

If γ = 0, then we get that a (2,3,1) and (1,-1,2) are linearly dependent. However,
this is impossible since (2,3,1) is not a scalar multiple of (1,-1,2) and vice versa.
Thus, γ must be non-zero. Thus:

α(2, 3, 1) + β(1,−1, 2) + γ(7, 3, c) = 0 =⇒ γ(7, 3, c) = −α(2, 3, 1)− β(1,−1, 2)

=⇒ (7, 3, c) = −α

γ
(2, 3, 1)− β

γ
(1,−1, 2)

Hence, if we let a = −α/γ and b = −β/γ, then

(7, 3, c) = a(2, 3, 1) + b(1,−1, 2)

which can be written as the following system of equation:
2a+ b = 7

3a− b = 3

a+ 2b = c

To solve the system, we can add equation 1 and 2 to get 5a = 10. It follows that
a = 2. If we plug-in a = 2 is equation 2, we get 6 − b = 3 so b = 3. Thus, we get
that c = a+ 2b = 2 + 2 · 3 = 8.
( ⇐= ) Suppose that c = 8. Using our work from the previous implication gives us

(7, 3, c) = 2(2, 3, 1) + 3(1,−1, 2)

which can be rearranged as

2(2, 3, 1) + 3(1,−1, 2) + (−1)(7, 3, c) = 0

Thus, since there exists a non-trivial linear combination that is equal to zero, then
the three vectors are linearly dependent.

Exercise 7

(a) Show that if we think of C as a vector space over R, then the list 1 + i, 1− i
is linearly independent.

(b) Show that if we think of C as a vector space over C, then the list 1 + i, 1− i
is linearly dependent.

Solution
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(a) By contradiction, suppose that 1 + i, 1 − i is linearly dependent, then using
Exercise 4.(b), we know that there is a scalar α ∈ R such that

1 + i = α(1− i) = α + (−α)i

But by the unique representation of complex numbers in the form a + ib, we
get that α = 1 and −α = 1, a contradiction. Thus, the list 1 + i, 1 − i is
linearly independent.

(b) Simply notice that
(1 + i) + (−i)(1− i) = 0

even if the scalars are not all zero. Therefore, the list 1 + i, 1 − i is linearly
dependent.

Exercise 8

Suppose v1, v2, v3; v4 is linearly independent in V . Prove that

v1 − v2, v2 − v3, v3 − v4, v4

is also linearly independent.

Solution

To prove that v1−v2, v2−v3, v3−v4, v4 is linearly independent, take arbitrary scalars
a, b, c, d ∈ F such that

a(v1 − v2) + b(v2 − v3) + c(v3 − v4) + dv4 = 0

and prove that a = b = c = d = 0. First, notice that we can rearrange the previous
equation as follows:

a(v1 − v2) + b(v2 − v3) + c(v3 − v4) + dv4 = 0

=⇒ av1 − av2 + bv2 − bv3 + cv3 − cv4 + dv4 = 0

=⇒ av1 + (b− a)v2 + (c− b)v3 + (d− c)v4 = 0

But since the list v1, v2, v3, v4 is linearly independent, then all coe�cents in the last
equation must be zero. Hence, we get the following system of equation:

a = 0

b− a = 0

c− b = 0

d− c = 0

which is equivalent to {
a = 0

a = b = c = d

It follows that a = b = c = d = 0. Therefore, the given list is linearly independent.
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Exercise 9

Prove or give a counterexample: If v1, v2, ..., vm is a linearly independent list of
vectors in V , then

5v1 − 4v2, v2, v3, ..., vm

is linearly independent.

Solution

To prove that 5v1 − 4v2, v2, v3, ..., vm is linearly independent, take arbitrary scalars
a1, ..., am ∈ F such that

a1(5v1 − 4v2) + a2v2 + a3v3 + ...+ amvm = 0

and prove that a1 = a2 = ... = am = 0. First, notice that we can rearrange the
previous equation as follows:

a1(5v1 − 4v2) + a2v2 + a3v3 + ...+ amvm = 0

=⇒ 5a1v1 − 4a1v2 + a2v2 + a3v3 + ...+ amvm = 0

=⇒ 5a1v1 + (a2 − 4a1)v2 + a3v3 + ...+ amvm = 0

But since the list v1, v2, ..., vm is linearly independent, then all coe�cents in the last
equation must be zero. Hence, we get the following system of equation:

5a1 = 0

a2 − 4a1 = 0

a3 = 0
...

am = 0

which is equivalent to a1 = a2 = ... = am = 0 by solving the system. Therefore, the
given list is linearly independent.

Exercise 10

Prove or give a counterexample: If v1, v2, ..., vm is a linearly independent list of vec-
tors in V and λ ∈ F with λ ̸= 0, then λv1, λv2, ..., λvm is linearly independent.

Solution

To prove that λv1, λv2, ..., λvm is linearly independent, take arbitrary scalars a1, ..., am ∈
F such that

a1λv1 + a2λv2 + ...+ amλvm = 0

and prove that a1 = a2 = ... = am = 0. But since the list v1, v2, ..., vm is linearly
independent, then all coe�cents in front of the ai's the last equation must be zero.
Hence, we get the following system of equation:

λa1 = 0

λa2 = 0
...

λam = 0
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Using the fact that λ ̸= 0, we can divide each equation in the system to get
a1 = a2 = ... = am = 0. Therefore, the given list is linearly independent.

Exercise 11

Prove or give a counterexample: If v1, ..., vm and w1, ..., wm are linearly independent
lists of vectors in V , then v1 + w1, ..., vm + wm is linearly independent.

Solution

Consider the following counterexample: take any list v1, v2, ..., vm of linearly in-
dependent vectors. We know from Exercise 10 that if we take λ = −1, then
−v1,−v2...,−vm is also linearly independent. However, the list v1 + (−v1), ..., vm +
(−vm) is precisely equal to the list containingm zero vectors. Thus, v1+(−v1), ..., vm+
(−vm) is not linearly independent since any linear combination of the vectors in that
list gives the zero vector, even if some scalars are non-zero.

Exercise 12

Suppose v1, ..., vm is linearly independent in V and w ∈ V . Prove that if v1 +
w, ..., vm + w is linearly dependent, then w ∈ span(v1, ..., vm).

Solution

Suppose that v1+w, ..., vm+w is linearly dependent, then there must be some scalars
a1, ..., am ∈ F not all zero such that

a1(v1 + w) + a2(v2 + w) + ...+ am(vm + w) = 0

But notice that we can rewrite the previous equation as follows:

(a1 + a2 + ...+ am)w = a1(−v1) + a2(−v2) + ...+ am(−vm)

De�ne α = a1 + a2 + ...+ am so we can rewrite again the equation as

αw = a1(−v1) + a2(−v2) + ...+ am(−vm)

and suppose by contradiction that α = 0. If α = 0, then the previous equation
becomes:

a1(−v1) + a2(−v2) + ...+ am(−vm) = 0

Using Exercise 10, by linear independence of v1, ..., vm and by taking λ = −1, we
get that the list −v1, ...,−vm is linearly independent as well. Hence, the previous
equation implies that a1 = a2 = ... = am = 0. But this is a contradiction with
the fact that the scalars a1, ..., am are not all zero. Thus, by contradiction, α ̸= 0.
Hence:

αw = a1(−v1) + a2(−v2) + ...+ am(−vm)

=⇒ w =
(
−a1

α

)
v1 +

(
−a2

α

)
v2 + ...+

(
−am

α

)
vm

which proves that w ∈ span(v1, ..., vm).

Exercise 13

Suppose v1, ..., vm is linearly independent in V and w ∈ V . Show that

v1, ..., vm, w is linearly independent ⇐⇒ w /∈ span(v1, ..., vm).
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Solution

( =⇒ ) By contrapositive, suppose that w ∈ span(v1, ..., vm), then there exist coe�-
cients coe�cents a1, ..., am ∈ F such that

w = a1v1 + ...+ amvm

which can be rewritten as

a1v1 + ...+ amvm + (−1)w = 0

Notice that not all scalars in this linear combination are zero. It follows that the
list v1, ..., vm, w is linearly dependent.

( ⇐= ) Again, by contrapositive, suppose that v1, ..., vm, w is linearly dependent,
then there exist coe�cients a1, ..., am, α ∈ F not all zero such that

a1v1 + ...+ amvm + αw = 0

By contradiction, if α = 0, then we get

a1v1 + ...+ amvm = 0

which implies, by linear independence of v1, ..., vm that all coe�cents are zero. A
contradiction since we know that at least one of them is non-zero. Thus, by contra-
diction, we have that α ̸= 0:

a1v1 + ...+ amvm + αw = 0

=⇒ − αw = a1v1 + ...+ amvm

=⇒ w =
(
−a1

α

)
v1 +

(
−a2

α

)
v2 + ...+

(
−am

α

)
vm

which proves that w ∈ span(v1, ..., vm).

Exercise 14

Suppose v1, ..., vm is a list of vectors in V . For k ∈ {1, ...,m}, let

wk = v1 + ...+ vk.

Show that the list v1, ...vm is linearly independent if and only if the list w1, ..., wm is
linearly independent.

Solution

( =⇒ ) Suppose that v1, ...vm is linearly independent, then for any scalars a1, ..., am ∈
F such that

a1w1 + ...+ amwm = 0,

we can rewrite the previous equation as

a1w1 + a1w2 + ...+ amwm = 0

=⇒ a1v1 + a2(v1 + v2)...+ am(v1 + ...+ vm) = 0

=⇒ a1v1 + a2v1 + a2v2...+ amv1 + ...+ amvm = 0

=⇒ (a1 + ...+ am)v1 + ...+ amvm = 0
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By linear independence of v1, ...vm, this implies

a1 + ...+ am = 0

a2 + ...+ am = 0
...

am−1 + am = 0

am = 0

We can easily solve this system of equation and get a1 = a2 = ... = am = 0. Thus,
w1, ..., wm is linearly independent.

(⇐= ) Suppose that w1, ...wm is linearly independent, then for any scalars a1, ..., am ∈
F such that

a1v1 + ...+ amvm = 0,

we can rewrite the previous equation as

a1v1 + a1v2 + ...+ amvm = 0

=⇒ a1w1 + a2(w2 − w1)...+ am(wm − wm−1) = 0

=⇒ a1w1 + a2w2 − a2w1...+ amwm − amwm−1 = 0

=⇒ (a1 − a2)w1 + (a2 − a3)w2 + ...+ amwm = 0

By linear independence of v1, ...vm, this implies
a1 − a2 = 0

a2 − a3 = 0
...

am = 0

We can easily solve this system of equation and get a1 = a2 = ... = am = 0. Thus,
v1, ..., vm is linearly independent.

Exercise 15

Explain why there does not exist a list of six polynomials that is linearly indepen-
dent in P4(F).

Solution

We already know a list of size 5 that spans P4(F): 1, x, x
2, x3, x4. Hence, any list of

linearly independent polynomials must have a length smaller than 5. In particular,
a linearly independent list of 6 polynomials cannot exist in P4(F).

Exercise 16

Explain why no list of four polynomials spans P4(F).

Solution

We already know a linearly independent list of size 5 in P4(F): 1, x, x2, x3, x4.
Hence, any list of polynomials that spans P4(F) must have a length greater or equal
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to 5. In particular, a spanning list of 4 polynomials cannot exist in P4(F).

Exercise 17

Prove that V is in�nite-dimensional if and only if there is a sequence v1, v2, ... of
vectors in V such that v1, ..., vm is linearly independent for every positive integer m.

Solution

( =⇒ ) Suppose that V is in�nite-dimensional, let's de�ne a sequence v1, v2, ... of
vectors recursively as follows. First, V cannot be the trivial vector space {0} because
the trivial vector space has a list of vectors that spans it: the list containing the
zero vector only. Hence, {0} is �nite-dimensional so it cannot be equal to V . Thus,
de�ne the vector v1 ∈ V as any non-zero vector. Obviously, the list v1 of length 1 is
linearly independent by Exercise 4.(a).

Recursively, suppose that we have a linearly independent list v1, v2, ..., vk of vec-
tors in V for some natural number k. Since V is in�nite-dimensional, then the given
list don't span V . It follows that there exists a vector vk+1 such that

vk+1 /∈ span(v1, ..., vk)

Therefore, by Exercise 13, the list v1, v2, ..., vk, vk+1 is linearly independent as well.
Now that we de�ned our sequence recursively, notice that by construction, for all
positive integer m, the list v1, ..., vm is linearly independent.

( ⇐= ) Suppose there is a sequence v1, v2, ... of vectors in V such that v1, ..., vm is
linearly independent for every positive integer m. By contradiction, suppose that V
is �nite-dimensional, then there is a list w1, ..., wN that spans V for some positive
integer N . However, if we let m = N + 1, then our assumption implies that there
is a linearly independent list of length N + 1 in V . This is in contradiction with
Theorem 2.22 so V must be in�nite-dimensional.

Exercise 18

Prove that F∞ is in�nite-dimensional.

Solution

Consider the sequence v1, v2, ... of sequences in F∞ de�ned as follows: for all positive
integer k, de�ne vk ∈ F∞ as the sequence with all terms equal to 0, except the kth
term which is equal to 1. For all positive integer m, consider the list v1, ..., vm.
Notice that by construction, for all scalars a1, ..., am ∈ F, the linear combination

a1v1 + a2v2 + ...+ amvm

is simply the sequence with terms (a1, a2, ..., am−1, am, 0, 0, 0, ...). It follows that this
linear combination is equal to the zero sequence if and only if all the coe�cients ai
are zero. Thus, the list v1, ..., vm is linearly independent. Therefore, by Exercise 17,
F∞ is in�nite-dimensional.

Exercise 19

Prove that the real vector space of all continuous real-valued functions on the inter-
val [0,1] is in�nite-dimensional.
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Solution

Consider the sequence v1, v2, ... of continuous functions on the interval [0,1] de�ned
by vk : x 7→ xk for all positive integer k. Let m be a positive integer and consider the
list v1, ..., vm. To show that this list is linearly independent, take arbitrary scalars
a1, ..., am ∈ R such that

a1v1 + a2v2 + ...+ amvm = 0

By de�nition of the vi's, the previous equation implies that

a1x+ a2x
2 + ...+ amx

m = 0

for all x ∈ [0, 1]. If we consider the function f : [0, 1] → [0, 1] de�ned by f(x) =
a1x + a2x

2 + ... + amx
m, then f is di�erentiable on [0,1]. Thus, di�erentiating on

both sides gives us
a1 + a2x+ ...+ amx

m−1 = 0

for all x ∈ [0, 1]. By plugging-in x = 0, we get a1 = 0. If we repeat this process m
times, we get a1 = a2 = ... = am = 0. Thus, the list is linearly independent. There-
fore, by Exercise 17, the real vector space of all continuous real-valued functions on
the interval [0,1] is in�nite-dimensional.

Exercise 20

Suppose p0, p1, ..., pm are polynomials in Pm(F) such that pk(2) = 0 for each k ∈
{0, ...,m}. Prove that p0, p1, ..., pm is not linearly independent in Pm(F).

Solution

We already know a list of size m+1 that spans Pm(F): 1, x, x
2, ..., xm. Hence, any

list of linearly independent polynomials must have a length smaller than m+1. By
contradiction, suppose that the given list p0, p1, ..., pm is linearly independent and
consider the constant polynomial p ≡ 1. Notice that for all scalars a0, ..., am ∈ F,
the new polynomial

a0p0 + a1p1 + ...+ ampm

also vanishes at x = 2. Hence, for any linear combination of the list p0, p1, ..., pm,
the polynomial p must be di�erent from this linear combination they don't evaluate
to the same number at x = 2. It follows that

p /∈ span(p0, p1, ..., pm)

Thus, by Exercise 13, the list p0, ..., pm, p is linearly independent. However, this
list has length m + 2 so we get a contradiction. Therefore, p0, p1, ..., pm cannot be
linearly independent in Pm(F).
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2B Bases

Exercise 1

Find all vector spaces that have exactly one basis.

Solution

Let V be a vector space over the �eld F that have exactly one basis. First, let's
show that the basis must contain only one vector. To do so, suppose that the basis
is the following list: b1, b2, ..., bn with n ≥ 2. Consider the new list b1, b1+b2, b3, ..., bn
where b2 is replaced by b1+ b2. Notice that this new list is also linearly independent
because for all scalars α1, ..., αn ∈ F:

α1b1 + α2(b1 + b2) + α3b3 + ...+ αnbn = 0

=⇒ (α1 + α2)b1 + α2b2 + α3b3 + ...+ αnbn = 0

=⇒ α1 + α2 = 0 and αi = 0, i = 2, ..., n

=⇒ αi = 0, i = 1, ..., n

Moreover, notice that for all u ∈ V , since b1, b2, ..., bn is a basis for V , then there
exist scalars a1, ..., an ∈ F such that

u = a1b1 + a2b2 + ...anbn

Hence,

u = (a1 − a2)b1 + a2(b1 + b2) + ...+ anbn ∈ span(b1, b1 + b2, ..., bn)

It follows that the new list also spans V . Therefore, the new list is a basis. But
since V has a unique basis, then the new list must be equal to the �rst one. In
particular, the vector b1 + b2 must be in the list b1, b2, ..., bn as well. Hence, there is
a i ∈ {1, ..., n} such that b1 + b2 = bi. If i = 1, then we get b2 = 0, a contradiction
with the fact that b1, ..., bn is linearly independent. Similarly, i = 2 would lead
to the same contradiction. Now, if i > 2, then we can rearrange the equation to
b1 + b2 − bi = 0. Again, this is impossible since the bj's are linearly independent.
Therefore, by contradiction, the unique basis for V must contain at most 1 vector.
Now, we have two cases, either the basis is a list of length 0 or a list of length 1.
If the list has length 0, then V must be the trivial vector space {0}. Indeed, the
trivial vector space over any �eld has a unique basis, the list of length 0.
Suppose now that the basis for V is a list of length 1, call v0 ̸= 0 the unique vector
in the basis. Let α be a non-zero scalar and consider the list containg the vector
αv0. Since nor α or v0 is zero, then αv0 is non-zero. Thus, this new list is linearly
independent. Moreover, for any u ∈ V , since the list v0 spans V , then there is a
λ ∈ F such that u = λv0. Thus:

u =
λ

α
(αv0) ∈ span(αv0)

It follows that the list αv0 is also a basis for V . By uniqueness, we must have
αv0 = v0. But since v0 ̸= 0:

αv0 = v0 =⇒ αv0 − v0

=⇒ (α− 1)v0 = 0

=⇒ α = 1
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In conclusion, the only non-zero element in F is 1 so F must be the �eld containing
two elements.
From these results, we get that the only vector spaces with exactly one basis are
either the trivial vector spaces on any �eld, or the vectors spaces over the �eld with
two elements with a basis containing only one element.

Exercise 2

Veri�y all assertions in Example 2.27.

Solution

(a) Denote by ei ∈ Fn the vector with all entries equal to zero except the ith entry
which is equal to 1. Let's show that the list e1, ..., en is a basis for Fn. First,
let's show that it spans Fn. Take an arbitrary (α1, ..., αn) ∈ Fn and notice
that

(α1, ..., αn) = α1(1, ..., 0) + ...+ αn(0, ..., 1)

= α1e1 + ...+ αnen

∈ span(e1, ..., en)

Hence, the list spans F n. Moreover, for any scalars α1, ..., αn ∈ F, we get

α1e1 + ...+ αnen = (0, ..., 0)

=⇒ α1(1, ..., 0) + ...+ αn(0, ..., 1) = (0, ..., 0)

=⇒ (α1, ..., αn) = (0, ..., 0)

=⇒ αi = 0 for all i = 1, ..., n

Therefore, the list e1, ..., en is a basis for Fn.

(b) Let's show that the list (1, 2), (3, 5) is a basis of F2. To do so, notice that for
all (a, b) ∈ F2, we have

(a, b) = (3b− 5a)(1, 2) + (2a− b)(3, 5) ∈ span((1, 2), (3, 5))

so the list spans F2. Moreover, for all scalars α, β ∈ F,

α(1, 2) + β(3, 5) = (0, 0) =⇒ (α + 3β, 2α + 5β) = (0, 0)

=⇒

{
α + 3β = 0

2α + 5β = 0

=⇒ α = β = 0

Thus, the list is linearly independent. Therefore, it is a basis for F2.

(c) Let's �rst prove that the list (1, 2,−4), (7,−5, 6) is linearly independent in F3.
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Notice that for all scalars α, β ∈ F:

α(1, 2,−4) + β(7,−5, 6) = 0 =⇒ (α + 7β, 2α− 5β,−4α + 6β) = 0

=⇒


α + 7β = 0

2α− 5β = 0

−4α + 6β = 0

=⇒


α + 7β = 0

4α− 10β = 0

−4α + 6β = 0

=⇒

{
α + 7β = 0

4β = 0

=⇒

{
α + 7β = 0

β = 0

=⇒ α = β = 0

It follows that the list is linearly independent. Now, to show that it doesn't
span F3, notice that the standard basis of F3 is linearly independent list of
length 3. Hence, any spanning list of F3 must have length bigger than or equal
to 3. Since the given list has length 2, then it cannot span F3.

(d) First, recall from part (b) of this exercise that the list (1, 2), (3, 5) spans F2.
Hence, for all (a, b) ∈ F2, there exist scalars α, β ∈ F such that

(a, b) = α(1, 2) + β(3, 5)

= α(1, 2) + β(3, 5) + 0(4, 13)

∈ span((1, 2), (3, 5), (4, 13))

It follows that the list (1, 2), (3, 5), (4, 13) spans F2. However, it is not linearly
independent because the standard basis of F2 is a spanning list of F2 of length
2. Hence, any linearly independent list in F2 must have length lesser than 2.
Since our given set has length 3, then it cannot be linearly independent.

(e) De�ne the set
S = {(x, x, y) ∈ F3 : x, y ∈ F}

and notice that it is a subspace of F 3. Let's show that the list (1, 1, 0), (0, 0, 1)
is a basis of S. First, linear independence follows from the fact that for all
α, β ∈ F:

α(1, 1, 0) + β(0, 0, 1) = 0 =⇒ (α, α, β) = 0

=⇒


α = 0

α = 0

β = 0

=⇒ α = β = 0

To show that the list spans S, let (x, x, y) be an arbitrary element of S where
x, y ∈ F , then:

(x, x, y) = x(1, 1, 0) + y(0, 0, 1) ∈ span((1, 1, 0), (0, 0, 1))

Therefore, the given list is a basis of S.
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(f) De�ne the set
S = {(x, y, z) ∈ F3 : x+ y + z = 0}

and notice that it is a subspace of F 3. Let's show that the list (1,−1, 0), (1, 0,−1)
is a basis of S. First, linear independence follows from the fact that for all
α, β ∈ F:

α(1,−1, 0) + β(1, 0,−1) = 0 =⇒ (α + β,−α,−β) = 0

=⇒


α + β = 0

−α = 0

−β = 0

=⇒ α = β = 0

To show that the list spans S, let (x, y, z) be an arbitrary element of S, then
we know that x+ y + z = 0 which implies that z = −x− y. Hence:

(x, y, z) = (−y)(1,−1, 0) + (x+ y)(1, 0,−1) ∈ span((1,−1, 0), (1, 0,−1))

Therefore, the given list is a basis of S.

(g) Consider the list 1, z, ..., zm as elements of Pm(F). Notice that for all scalars
α0, α1, ..., αm ∈ F, we have

α0 + α1z + ...+ αmz
m = 0 =⇒ αi = 0, i = 0, 1, ...,m

Moreover, given a polynomial α0 + α1z + ...+ αmz
m ∈ Pm(F), it directly fol-

lows by the way it is written that it is a linear combination of the given list.
Therefore, it is a basis of Pm(F).

Exercise 3

(a) Let U be the subspace of R5 de�ned by

U = {(x1, x2, x3, x4, x5) ∈ R5 : x1 = 3x2 and x3 = 7x4}.

Find a basis of U .

(b) Extend the basis in (a) to a basis of R5.

(c) Find a subspace W of R5 such that R5 = U ⊕W .

Solution

(a) Consider the list u1 = (3, 1, 0, 0, 0), u2 = (0, 0, 7, 1, 0, ), u3 = (0, 0, 0, 0, 1) and
let's prove that it is a basis for U . First, for any scalars α, β, γ ∈ R:

αu1 + βu2 + γu3 = 0 =⇒ (3α, α, 7β, β, γ) = 0

=⇒



3α = 0

α = 0

7β = 0

β = 0

γ = 0

=⇒ α = β = γ = 0
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Moreover, for any (x1, x2, x3, x4, x5) ∈ U , we now that x1 = 3x2 and x3 = 7x4.
Hence:

(x1, x2, x3, x4, x5) = (3x2, x2, 7x4, x4, x5)

= x2u1 + x4u2 + x5u3

∈ span(u1, u2, u3)

Therefore, it is a basis of U .

(b) As in the proof of 2.32, consider the list (3, 1, 0, 0, 0), (0, 0, 7, 1, 0, ), (0, 0, 0, 0, 1),
e1, e2, e3, e4, e5 where e1, e2, e3, e4, e5 is the standard basis for R5. This list
is spanning R5 but it is not linearly independent. Hence, we can reduce it
to a basis as follows. First, remove e5 because it is already in the list. Keep
the �rst three vectors since we know that they are linearly independent. The
vector e1 cannot be written as a linear combination of the �rst three vectors
so keep it in the list. The vector e2 can be written as

e2 = (3, 1, 0, 0, 0)− 3e1

so we don't keep it in the list. Similarly, e3 is not in the span of the �rst four
vectors in the list so we keep it, and e4 can be written as

e4 = (0, 0, 7, 1, 0)− 7e3

so we remove it. Hence, our original list can be extended to a basis by adding
the vectors e1 and e3.

(c) As in the proof of 2.33, takeW = span(e1, e3), then it follows thatR
5 = U⊕W .

Exercise 4

(a) Let U be the subspace of C5 de�ned by

U = {(z1, z2, z3, z4, z5) ∈ C5 : 6z1 = z2 and z3 + 2z4 + 3z5 = 0}.

Find a basis of U .

(b) Extend the basis in (a) to a basis of C5.

(c) Find a subspace W of C5 such that C5 = U ⊕W .

Solution

(a) Consider the list u1 = (1, 6, 0, 0, 0), u2 = (0, 0,−2, 1, 0, ), u3 = (0, 0,−3, 0, 1)
and let's prove that it is a basis for U . First, for any scalars α, β, γ ∈ R:

αu1 + βu2 + γu3 = 0 =⇒ (α, 6α,−2β − 3γ, β, γ) = 0

=⇒



α = 0

6α = 0

−2β − 3γ = 0

β = 0

γ = 0

=⇒ α = β = γ = 0



CHAPTER 2. FINITE-DIMENSIONAL VECTOR SPACES 48

Moreover, for any (z1, z2, z3, z4, z5) ∈ U , we now that 6z1 = z2 and z3 + 2z4 +
3z5 = 0. Hence:

(z1, z2, z3, z4, z5) = (z1, 6z1,−2z4 − 3z5, z4, z5)

= z1u1 + z4u2 + z5u3

∈ span(u1, u2, u3)

Therefore, it is a basis of U .

(b) As in the proof of 2.32, consider the list u1, u2, u3, e1, e2, e3, e4, e5 where e1,
e2, e3, e4, e5 is the standard basis for C5. This list is spanning C5 but it is not
linearly independent. Hence, we can reduce it to a basis as follows. First, keep
the �rst three vectors since we know that they are linearly independent. The
vector e1 cannot be written as a linear combination of the �rst three vectors
so keep it in the list. The vector e2 can be written as

e2 =
1

6
(u1 − e1)

so we don't keep it in the list. Similarly, e3 is not in the span of the �rst four
vectors in the list so we keep it, and e4 can be written as

e4 = u2 + 2e3

so we remove it. Again, we also remove e5 because

e5 = u3 + 3e3

Hence, our original list can be extended to a basis by adding the vectors e1
and e3.

(c) As in the proof of 2.33, takeW = span(e1, e3), then it follows thatC
5 = U⊕W .

Exercise 5

Suppose V is �nite-dimensional and U , W are subspaces of V such that V = U+W .
Prove that there exists a basis of V consisting of vectors in U ∪W .

Solution

Since V is �nite-dimensional, then U and W must be �nite-dimensional as well by
Proposition 2.25. Hence, let u1, ..., un be a list of vectors spanning U , and w1, ..., wm

be a list of vectors spanning W . Consider the list u1, ..., un, w1, ..., wm of vectors in
U ∪W . Notice that for all v ∈ V = U +W , there exist vectors u ∈ U and w ∈ W
such that v = u+w. Moreover, since the lists u1, ..., un and w1, ..., wm are spanning
their respective subspaces, then there exist scalars α1, ..., αn ∈ F and β1, ..., βm ∈ F
such that

u = α1u1 + ...+ αnun

and
w = β1w1 + ...+ βmwm

It follows that
v = α1u1 + ...+ αnun + β1w1 + ...+ βmwm
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so the list u1, ..., un, w1, ..., wm spans V . By Proposition 2.30, this list must contain
a sublist that is a basis of V . Thus, such a sublist is indeed a basis of V consisting
of vectors in U ∪W by construction.

Exercise 6

Prove or give a counterexample: If p0, p1, p2, p3 is a list in P3(F) such that none of
the polynomials p0, p1, p2, p3 has degree 2, then p0, p1, p2, p3 is not a basis of P3(F).

Solution

Consider the following list of polynomials in P3(F):

p0(x) = 1 p2(x) = 1 + x+ x2 + x3

p2(x) = x p3(x) = x3

and notice that it contains no polynomials of degree 2. Let's show that it is a basis
for P3(F). To do so, consider the fact that 1, x, x3 ∈ span(p0, p1, p2, p3). Moreover,

x2 = p2 − p0 − p1 − p3 ∈ span(p0, p1, p2, p3)

Hence, span(p0, p1, p2, p3) is a subspace that contains the standard basis of P3(F).
It follows that p0, p1, p2, p3 spans P3(F). To prove the linear independence, simply
take scalars a0, a1, a2, a3 ∈ F and notice that

a0p0 + a1p1 + a2p2 + a3p3 = 0 =⇒ a0 + a1x+ a2(1 + x+ x2 + x3) + a3x
3 = 0

=⇒ (a0 + a2) + (a1 + a2)x+ a2x
2 + (a3 + a2)x

3 = 0

=⇒


a0 + a2 = 0

a1 + a2 = 0

a2 = 0

a3 + a2 = 0

=⇒ a0 = a1 = a2 = a3 = 0

Therefore, p0, p1, p2, p3 is a basis of P3(F) even if it contains no polynomials of de-
gree 2.

Exercise 7

Suppose v1, v2, v3, v4 is a basis of V . Prove that

v1 + v2, v2 + v3, v3 + v4, v4

is also a basis of V .

Solution

First, let's prove that it is linearly independent. Take scalars a1, a2, a3, a4 ∈ F, by
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linear independence of v1, v2, v3, v4:

a1(v1 + v2) + a2(v2 + v3) + a3(v3 + v4) + a4v4 = 0

=⇒ a1v1 + (a1 + a2)v2 + (a2 + a3)v3 + (a3 + a4)v4 = 0

=⇒


a1 = 0

a1 + a2 = 0

a2 + a3 = 0

a3 + a4 = 0

=⇒ a1 = a2 = a3 = a4 = 0

To prove that it spans V , take v ∈ V . Since v1, v2, v3, v4 spans V , then there exist
scalars a1, a2, a3, a4 ∈ F such that

u = a1v1 + a2v2 + a3v3 + a4v4

But since
v1 = (v1 + v2)− (v2 + v3) + (v3 + v4)− v4

v2 = (v2 + v3)− (v3 + v4) + v4

and
v3 = (v3 + v4)− v4,

then

u = a1v1 + a2v2 + a3v3 + a4v4

= a1[(v1 + v2)− (v2 + v3) + (v3 + v4)− v4]

+ a2[(v2 + v3)− (v3 + v4) + v4]

+ a3[(v3 + v4)− v4] + a4v4

= a1(v1 + v2) + (a2 − a1)(v2 + v3)

+ (a3 − a2 + a1)(v3 + v4) + (a4 − a3 + a2 − a1)v4

which proves that it spans V . Therefore, the new list of vectors is also a basis of V .

Exercise 8

Prove or give a counterexample: If v1, v2, v3, v4 is a basis of V and U is a subspace
of V such that v1, v2 ∈ U and v3 /∈ U and v4 /∈ U , then v1, v2 is a basis of U .

Solution

Consider the following counterexample: Take V = R4, v1, v2, v3, v4 be the standard
basis and de�ne

U = span(v1, v2, (0, 0, 1, 1))

Obviously, U is a subspace of V that contains v1 and v2. Moreover, if v3 ∈ U , then
there would be scalars a, b, c ∈ R such that

(0, 0, 1, 0) = (a, b, c, c) =⇒ c = 1 and c = 0,

a contradiction that shows that v3 /∈ U . Using a similar argument, v4 /∈ U as well.
However, v1, v2 is not a basis of U because it doesn't span it. Take for example
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(0, 0, 1, 1) ∈ U which is not in the span of v1, v2.

Exercise 9

Suppose v1, ..., vm is a list of vectors in V . For k ∈ {1, ...,m}, let

wk = v1 + ...+ vk.

Show that v1, ..., vm is a basis of V if and only if w1, ..., wm is a basis of V .

Solution

Suppose that v1, ..., vm is a basis, then it is linearly independent. By Section 2A Ex-
ercise 14, w1, ..., wm must be linearly independent as well. Moreover, since v1, ..., vm
is a basis, then span(v1, ..., vm) = V . Again, using Section 2A Exercise 3, we have
that span(w1, ..., wm) = span(v1, ..., vm) = V . It follows that w1, ..., wm spans V .
Therefore, w1, ..., wm is a basis of V . All the arguments presented here prove the
reverse implication as well.

Exercise 10

Suppose U and W are subspace of V such that V = U ⊕ W . Suppose also that
u1, ..., um is a basis of U and w1, ..., wn is basis of W . Prove that

u1, ..., um, w1, ..., wm

is a basis of V .

Solution

First, let's prove that u1, ..., um, w1, ..., wm spans V . Take an arbitrary v ∈ V , then
there exist vectors u ∈ U and w ∈ W such that v = u+w. Since u1, ..., um is a basis
of U and w1, ..., wn is basis of W , then there exist scalars α1, ..., αm, β1, ..., βn ∈ F
such that

u = α1u1 + ...+ αmum

and
w = β1w1 + ...+ βnwn

It follows that

v = α1u1 + ...+ αmum + β1w1 + ...+ βnwn ∈ span(u1, ..., um, w1, ..., wn)

which proves that the list spans V . Now, to prove the inear independence, take
arbitrary scalars α1, ..., αm, β1, ..., βn ∈ F and recall that u+w = 0 =⇒ u = w = 0
for all u ∈ U and w ∈ W . Hence,

α1u1 + ...+ αmum + β1w1 + ...+ βnwn = 0

implies {
α1u1 + ...+ αmum = 0

β1w1 + ...+ βnwn = 0

But since the lists u1, ..., um and w1, ..., wn are linearly independent, then we get

α1 = ... = αm = β1 = ... = βn = 0
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Therefore, the list u1, ..., um, w1, ..., wm is a basis of V .

Exercise 11

Suppose V is a real vector space. Show that if v1, ..., vn is a basis of V (as a real
vector space), then v1, ..., vn is also a basis of the complexi�cation VC (as a complex
vector space).

Solution

First, let's show that v1, ..., vn spans VC. To do so, let u + iv ∈ VC be an arbitrary
vector. Since u, v ∈ V , then there exist scalars α1, ..., αn, β1, ..., βn ∈ R such that

u = α1v1 + ...+ αnvn

and
v = β1v1 + ...+ βnvn.

It follows that

u+ iv = α1v1 + ...+ αnvn + iβ1v1 + ...+ iβnvn

∈ span(v1, ..., vn)

Thus, v1, ..., vn spans VC. To prove the linear independence, let α1+iβ1, ..., αn+iβn ∈
C be complex scalars and notice that

(α1 + iβ1)v1 + ...+ (αn + iβn)vn = 0

=⇒ [α1v1 + ...+ αnvn] + i[β1v1 + ...+ βnvn] = 0

=⇒

{
α1v1 + ...+ αnvn = 0

β1v1 + ...+ βnvn = 0

=⇒ α1 = ... = αn = β1 = ... = βn = 0

=⇒ α1 + iβ1 = ... = αn + iβn = 0

Thus, the vectors v1, ..., vn are linearly independent in VC. Therefore, it is a basis
of VC.
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2C Dimension

Exercise 1

Show that the subspaces ofR2 are precisely {0}, all lines inR2 containing the origin,
and R2.

Solution

Let V be a subspace of R2. Since R2 has dimension 2, then 0 ≤ dimV ≤ 2 by
Proposition 2.37. If V has dimension 0, then its basis must be the empty set. In
that case, V = span(∅) = {0}. If V has dimension 1, then its basis must contain a
single non-zero vector. It follows that

V = span(u) = {λu : λ ∈ R}.

But notice that λu with λ ∈ R is simply the equation of a line with direction vector
u passing through the origin (take λ = 0), hence, V is a line passing through the
origin. Finaly, if V has dimension 2, then by Proposition 2.39, V = R2. Therefore,
since V was an arbitrary subspace, then subspaces of R2 are {0}, all lines in R2

containing the origin, and R2.
To prove that the subspaces of R2 are precisely these subsets, let's show that any
of these subsets are subspaces. Trivialy, {0} and R2 are indeed subspaces of R2.
Now, let L be a line in R2 passing through the origin, then L must have a direction
vector u. Moreover, if L passes through the point P , then we can write

L = {P + λu : λ}

Since L contains the origin, then we can take P = 0 which implies that

L = {λu : λ} = span(u)

which is a subspace of R2. Therefore, the subspaces of R2 are precisely {0}, all lines
in R2 containing the origin, and R2.

Exercise 2

Show that the subspaces ofR3 are precisely {0}, all lines inR3 containing the origin,
all planes in R3 containing the origin, and R3.

Solution

Let V be a subspace of R3. Since R3 has dimension 3, then 0 ≤ dimV ≤ 3 by
Proposition 2.37. If V has dimension 0, then its basis must be the empty set. In
that case, V = span(∅) = {0}. If V has dimension 1, then its basis must contain a
single non-zero vector. It follows that

V = span(u) = {λu : λ ∈ R}.

But notice that λu with λ ∈ R is simply the equation of a line with direction vector
u passing through the origin (take λ = 0), hence, V is a line passing through the
origin. If V has dimension 2, then there are two linearly independent vectors u1, u2

such that
V = span(u1, u2) = {αu1 + βu2 : α, β ∈ R}
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But notice that αu1 + βu2 is simply the equation of a plane containing the origin
described by the two vectors u1 and u2. Hence, V is a plane containing the origin.
Finaly, if V has dimension 3, then by Proposition 2.39, V = R3. Thus, subspaces
of R3 are {0}, lines and planes containing the origin and R3.
To prove that the subspaces of R3 are precisely these subsets, let's show that any
of these subsets are subspaces. Trivialy, {0} and R3 are indeed subspaces of R3.
Now, let L be a line in R3 passing through the origin, then L must have a direction
vector u. Moreover, if L passes through the point P , then we can write

L = {P + λu : λ}

Since L contains the origin, then we can take P = 0 which implies that

L = {λu : λ} = span(u)

which is a subspace of R3. Similarly, if P is a plane in R3 containing the origin, then
it must contain two linearly independent vectors u1, u2 that describe the orientation
of the plane. Moreover, if A is a point on the plan P , then the vectors in the P are
described by the equation

A+ αu1 + βu2

Since P contains the origin, then take A = 0 to get:

P = {αu1 + βu2 : α, β ∈ R} = span(u1, u2)

It follows that P is a subspace of R3. Therefore, the subspaces of R2 are precisely
{0}, all lines in R2 containing the origin, and R2.

Exercise 3

(a) Let U = {p ∈ P4(F) : p(6) = 0}. Find a basis of U .

(b) Extend the basis in (a) to a basis of P4(F).

(c) Find a subspace W of P4(F) such that P4(F) = U ⊕W .

Solution

(a) Consider the list p1, p2, p3, p4 de�ned by

p1(x) = x− 6 p2(x) = x2 − 6x

p3(x) = x3 − 6x2 p4(x) = x4 − 6x3

This list spans U because given any p ∈ U , then p is a polynomial of degree
four that has 6 as a root. Hence, we can factorize x − 6 such that p(x) =
(x− 6)(ax3 + bx2 + cx+ d) for some a, b, c, d ∈ F. Thus:

p(x) = (x− 6)(ax3 + bx2 + cx+ d)

= a(x4 − 6x3) + b(x3 − 6x2) + c(x2 − 6x) + d(x− 6)

= ap4(x) + bp3(x) + cp2(x) + dp1(x)
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which shows that the list spans U . To show that it is linearly independent,
take scalars a, b, c, d ∈ F and notice that

ap4(x) + bp3(x) + cp2(x) + dp1(x) = 0

=⇒ a(x4 − 6x3) + b(x3 − 6x2) + c(x2 − 6x) + d(x− 6) = 0

=⇒ ax4 + (b− 6a)x3 + (c− 6b)x2 + (d− 6c)x+ (−6d) = 0

=⇒



a = 0

b− 6a = 0

c− 6b = 0

d− 6c = 0

−6d = 0

=⇒ a = b = c = d = 0

Therefore, p1, p2, p3, p4 is a basis of U .

(b) Since the list p1, p2, p3, p4 is linearly independent in U , then it must be linearly
independent in P4(F). Hence, we can extend it to a basis of P4(F). To do so,
we only need to add one single polynomial to our list because we already know
a basis of P4(F) of size 5: 1, x, x

2, x3, x4. It is easy to notice that the constant
polynomial 1 cannot be written as a linear combination of p1, p2, p3, p4 because
for any scalars a, b, c, d ∈ F:

ap4(x) + bp3(x) + cp2(x) + dp1(x) = 1

=⇒ a(x4 − 6x3) + b(x3 − 6x2) + c(x2 − 6x) + d(x− 6) = 1

=⇒ ax4 + (b− 6a)x3 + (c− 6b)x2 + (d− 6c)x+ (−6d) = 1

=⇒



a = 0

b− 6a = 0

c− 6b = 0

d− 6c = 0

−6d = 1

=⇒ a = b = c = d = 0 and d− 1

6

A contradiction. Therefore, by Section 2A Exercise 13, the list 1, p1, p2, p3, p4
is linearly independent. Since the list has length 5, then it must be a basis by
Proposition 2.38.

(c) Since 1, p1, p2, p3, p4 is a basis of P4(F), then we can easily get

P4(F) = U ⊕ F

where F denotes the set of constant polynomials.

Exercise 4

(a) Let U = {p ∈ P4(F) : p
′′(6) = 0}. Find a basis of U .
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(b) Extend the basis in (a) to a basis of P4(F).

(c) Find a subspace W of P4(F) such that P4(F) = U ⊕W .

Solution

(a) Consider the list p1, p2, p3, p4 de�ned by

p1(x) = 1 p2(x) = x

p3(x) =
1

6
x3 − 3x2 p4(x) =

1

12
x4 − x3

To show that it is linearly independent, take scalars a, b, c, d ∈ F and notice
that

ap4(x) + bp3(x) + cp2(x) + dp1(x) = 0

=⇒ a

(
1

12
x4 − x3

)
+ b

(
1

6
x3 − 3x2

)
+ cx+ d = 0

=⇒ a

12
x4 +

(
b

6
− a

)
x3 + (−3b)x2 + cx+ d = 0

=⇒



a
12

= 0
b
6
− a = 0

−3b = 0

c = 0

d = 0

=⇒ a = b = c = d = 0

Therefore, p1, p2, p3, p4 is linearly independent in U . To prove that it is a basis,
consider its span. If p1, p2, p3, p4 don't span U , then we must be able to extend
it to a basis of U . However, since dimU ≤ dimP4(F) = 5, then we can add
only one polynomial. In this case, U has a basis of length 5 which implies that
U = P4(F) by Proposition 2.39, a contradiction since x2 /∈ U . It follows that
the list p1, p2, p3, p4 must span U . Therefore, it is a basis of U .

(b) Since the list p1, p2, p3, p4 is linearly independent in U , then it must be linearly
independent in P4(F). Hence, we can extend it to a basis of P4(F). To do
so, we only need to add one single polynomial to our list because we already
know a basis of P4(F) of size 5: 1, x, x2, x3, x4. It is easy to notice that
the polynomial x2 cannot be written as a linear combination of p1, p2, p3, p4
since x2 /∈ U . Therefore, by Section 2A Exercise 13, the list x2, p1, p2, p3, p4 is
linearly independent. Since the list has length 5, then it must be a basis by
Proposition 2.38.

(c) Since x2, p1, p2, p3, p4 is a basis of P4(F), then we can easily get

P4(F) = U ⊕ Fx2

where Fx2 denotes the span of the polynomial x2.
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Exercise 5

(a) Let U = {p ∈ P4(F) : p(2) = p(5)}. Find a basis of U .

(b) Extend the basis in (a) to a basis of P4(F).

(c) Find a subspace W of P4(F) such that P4(F) = U ⊕W .

Solution

(a) Consider the list p1, p2, p3, p4 de�ned by

p1(x) = 1 p2(x) = (x− 2)(x− 5)

p3(x) = x(x− 2)(x− 5) p4(x) = x2(x− 2)(x− 5)

To show that it is linearly independent, take scalars a, b, c, d ∈ F and notice
that

ap4(x) + bp3(x) + cp2(x) + dp1(x) = 0

=⇒ a(x4 − 7x3 + 10x2) + b(x3 − 7x2 + 10x) + c(x2 − 7x+ 10) + d = 0

=⇒ ax4 + (b− 7a)x3 + (c− 7b+ 10a)x2 + (10b− 7c)x+ (10c+ d) = 0

=⇒



a = 0

b− 7a = 0

c− 7b+ 10a = 0

10b− 7c = 0

10c+ d = 0

=⇒ a = b = c = d = 0

Therefore, p1, p2, p3, p4 is linearly independent in U . To prove that it is a basis,
consider its span. If p1, p2, p3, p4 don't span U , then we must be able to extend
it to a basis of U . However, since dimU ≤ dimP4(F) = 5, then we can add
only one polynomial. In this case, U has a basis of length 5 which implies that
U = P4(F) by Proposition 2.39, a contradiction since x2 /∈ U . It follows that
the list p1, p2, p3, p4 must span U . Therefore, it is a basis of U .

(b) Since the list p1, p2, p3, p4 is linearly independent in U , then it must be linearly
independent in P4(F). Hence, we can extend it to a basis of P4(F). To do
so, we only need to add one single polynomial to our list because we already
know a basis of P4(F) of size 5: 1, x, x2, x3, x4. It is easy to notice that
the polynomial x2 cannot be written as a linear combination of p1, p2, p3, p4
since x2 /∈ U . Therefore, by Section 2A Exercise 13, the list x2, p1, p2, p3, p4 is
linearly independent. Since the list has length 5, then it must be a basis by
Proposition 2.38.

(c) Since x2, p1, p2, p3, p4 is a basis of P4(F), then we can easily get

P4(F) = U ⊕ Fx2

where Fx2 denotes the span of the polynomial x2.
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Exercise 6

(a) Let U = {p ∈ P4(F) : p(2) = p(5) = p(6)}. Find a basis of U .

(b) Extend the basis in (a) to a basis of P4(F).

(c) Find a subspace W of P4(F) such that P4(F) = U ⊕W .

Solution

(a) Consider the list p1, p2, p3 de�ned by

p1(x) = 1

p2(x) = (x− 2)(x− 5)(x− 6)

p3(x) = x(x− 2)(x− 5)(x− 6)

To show that it is linearly independent, take scalars a, b, c ∈ F and notice that

ap3(x) + bp2(x) + cp1(x) = 0

=⇒ a(x4 − 13x3 + 52x2 − 60x) + b(x3 − 13x2 + 52x− 60) + c = 0

=⇒ ax4 + (b− 13a)x3 + (52a− 13b)x2 + (52b− 60a)x+ (c− 60b) = 0

=⇒



a = 0

b− 13a = 0

52a− 13b = 0

52b− 60a = 0

c− 60b = 0

=⇒ a = b = c = 0

Therefore, p1, p2, p3 is linearly independent in U . Let's now show that it spans
U . To do so, let p be an arbitrary polynomial in U , then p − p(2) must have
roots at x = 2, 5, 6 which means that

p(x)− p(2) = (x− 2)(x− 5)(x− 6)q(x)

where q is a polynomial of degree 1. Thus, there exist scalars a, b ∈ F such
that q(x) = ax+ b. Thus,

p(x) = (x− 2)(x− 5)(x− 6)q(x) + p(2)

= (x− 2)(x− 5)(x− 6)(ax+ b) + p(2)

= ax(x− 2)(x− 5)(x− 6) + b(x− 2)(x− 5)(x− 6) + p(2)

= ap3(x) + bp2(x) + p(2)p1(x)

∈ span(p1, p2, p3)

Therefore, p1, p2, p3 is a basis for U .

(b) Since the list p1, p2, p3 is linearly independent in U , then it must be linearly
independent in P4(F). Hence, we can extend it to a basis of P4(F). To do
so, we need to add two polynomials to our list because dimP4(F) = 5. It is
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easy to see that the polynomial x cannot be written as a linear combination of
p1, p2, p3 since x /∈ U . Therefore, by Section 2A Exercise 13, the list x, p1, p2, p3
is linearly independent. Let's add one last polynomial to our list to make it
a basis of U . Suppose that x2 ∈ span(x, p1, p2, p3), then there exist scalars
a, b, c, d ∈ F such that

x2 = ax+ bp1(x) + cp2(x) + dp3(x)

But notice that bp1 + cp2 + dp3 ∈ U so just de�ne it as pU , then we have

x2 = ax+ pU(x)

where pU(2) = pU(5) = pU(6). This, if we plug-in x = 2, 5, 6, we get the
following system of equations: 

4 = 2a+ pU(2)

25 = 5a+ pU(2)

36 = 6a+ pU(2)

=⇒

{
21 = 3a

11 = a

A contradiction that shows that x2 is not in the span of x, p1, p2, p3. Therefore,
by Section 2A Exercise 13, the list x, x2, p1, p2, p3 is linearly independent. Since
the list has length 5, then it must be a basis by Proposition 2.38.

(c) Since x, x2, p1, p2, p3 is a basis of P4(F), then we can easily get

P4(F) = U ⊕ span(x, x2)

Exercise 7

(a) Let U = {p ∈ P4(F) :
∫ 1

−1
p = 0}. Find a basis of U .

(b) Extend the basis in (a) to a basis of P4(F).

(c) Find a subspace W of P4(F) such that P4(F) = U ⊕W .

Solution

(a) Consider the list p1, p2, p3, p4 de�ned by

p1(x) = x p2(x) = x2 − 1

3

p3(x) = x3 p4(x) = x4 − 1

5



CHAPTER 2. FINITE-DIMENSIONAL VECTOR SPACES 60

To show that it is linearly independent, take scalars a, b, c, d ∈ F and notice
that

ap4(x) + bp3(x) + cp2(x) + dp1(x) = 0

=⇒ a

(
x4 − 1

5

)
+ bx3 + c

(
x2 − 1

3

)
+ dx = 0

=⇒ ax4 + bx3 + cx2 + dx−
(a
5
+

c

3

)
= 0

=⇒



a = 0

b = 0

c = 0

d = 0
a
5
+ c

3
= 0

=⇒ a = b = c = d = 0

Therefore, p1, p2, p3, p4 is linearly independent in U . To prove that it is a basis,
consider its span. If p1, p2, p3, p4 don't span U , then we must be able to extend
it to a basis of U . However, since dimU ≤ dimP4(F) = 5, then we can add
only one polynomial. In this case, U has a basis of length 5 which implies that
U = P4(F) by Proposition 2.39, a contradiction since 1 /∈ U . It follows that
the list p1, p2, p3, p4 must span U . Therefore, it is a basis of U .

(b) Since the list p1, p2, p3, p4 is linearly independent in U , then it must be linearly
independent in P4(F). Hence, we can extend it to a basis of P4(F). To do so,
we only need to add one single polynomial to our list because dimP4(F) =
5. It is easy to notice that the polynomial 1 cannot be written as a linear
combination of p1, p2, p3, p4 since 1 /∈ U . Therefore, by Section 2A Exercise
13, the list 1, p1, p2, p3, p4 is linearly independent. Since the list has length 5,
then it must be a basis by Proposition 2.38.

(c) Since 1, p1, p2, p3, p4 is a basis of P4(F), then we can easily get

P4(F) = U ⊕ F

where F denotes the subspace of constant polynomials.

Exercise 8

Suppose v1, ..., vm is linearly independent in V and w ∈ V . Prove that

dim span(v1 + w, ..., vm + w) ≥ m− 1.

Solution

Consider the list v1 + w, ..., vm + w of length m and suppose by contradiction that

dim span(v1 + w, ..., vm + w) = d ≤ m− 2,

then there exists a linearly independent list of vectors u1, ..., ud in V such that

span(v1 + w, ..., vm + w) = span(u1, ..., ud).
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For each i ∈ {1, ..., n}, the previous equation implies that

vi + w = α1u1 + ...+ αdud,

which itself implies that

vi = α1u1 + ...+ αdud − w ∈ span(u1, ..., ud, w).

Since it holds for all i ∈ {1, ..., n}, then

{v1, ..., vm} ⊂ span(u1, ..., ud, w) =⇒ span(v1, ..., vm) ≤ span(u1, ..., ud, w).

Since subspaces have a dimensions less than the vector space they are contained in
(Proposition 2.37), then

dim span(v1, ..., vm) ≤ dim span(u1, ..., ud, w). (1)

The vi's are linearly independent so they form a basis for their span. It follows that

dim span(v1, ..., vm) = m. (2)

Moreover, the list u1, ..., ud, w is spanning its span (obviously), so it must contain a
basis. Since the list has length d + 1, then the dimension of the span must be less
than d+ 1. But since d ≤ m− 2, then

dim span(u1, ..., ud, w) ≤ m− 1. (3)

Combining equations (1), (2) and (3) gives us

m ≤ m− 1

which is clearly a contradiction. Therefore,

dim span(v1 + w, ..., vm + w) ≥ m− 1.

Exercise 9

Suppose m is a positive integer and p0, p1, ..., pm ∈ P(F) are such that each pk has
degree k. Prove that p0, p1, ..., pm is a basis of Pm(F).

Solution

Since the list p0, p1, ..., pm has length m+1 and we already know that dimPm(F) =
m + 1, then it su�ces to show that the list is linearly independent by Proposition
2.38. Let's prove by induction on m that any list p0, p1, ..., pm such that each pk has
degree k must be linearly independent.
For the base case, take m = 0 and consider the list p0 where p0 is a polynomial of
degree 0. Hence p0 must be a nonzero constant polynomial (since the zero polynomial
has degree −∞). But we know from Section 2A Exercise 4(a) that the list containing
p0 only must be linearly independent since it is nonzero. This proves that the
statement holds for m = 0.
Suppose now that it holds for an integer m ≥ 0 and consider the list p0, p1, ..., pm+1
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such that each pk has degree k. By our assumption, we know that the list p0, p1, ..., pm
is linearly independent. If we take arbitrary scalars α0, ..., αm+1 satisfying

α0p0 + α1p1 + ...αm+1pm+1 = 0,

then notice that αm+1 must be equal to zero since pm+1 is only polynomial in the
linear combination containing a xm+1 term. Thus, we get that

α0p0 + α1p1 + ...αmpm = 0.

But by linear independence of the pi's, we know that α0 = ... = αm = 0. It follows
that the new list is linearly independent as well. Therefore, by induction, all such
lists must be linearly independent and hence, a basis for Pm(F).

Exercise 10

Suppose m is a positive integer. For 0 ≤ k ≤ m, let

pk(x) = xk(1− x)m−k.

Show that p0, ..., pm is a basis of Pm(F).

Solution

Since the list p0, p1, ..., pm has length m+1 and we already know that dimPm(F) =
m + 1, then it su�ces to show that the list is linearly independent by Proposition
2.38.
Let α0, α1, ..., αm ∈ F be scalars such that

α0p0 + α1p1 + ...+ αmpm = 0.

The polynomial on the left hand side is equal to zero, this implies that the coe�cients
in front of each monomial of the form xk are zero. Given a k between 0 and m,
notice that the polynomial pk can be written as

pk(x) = xk

m−k∑
i=0

(
m− k

i

)
(−1)ixi =

m∑
i=k

(
m− k

i

)
(−1)i−kxi

using the Binomial Formula. It follows that the lowest degree term in pk is xk.
Therefore, in the list p0, ..., pm, p0 is the only polynomial containing a constant
term. Hence, the constant term in the polynomial α0p0 + α1p1 + ... + αmpm is α0.
It follows that α0 = 0. Thus, we now have the equation

α1p1 + ...+ αmpm = 0.

In the list p1, ..., pm, the polynomial p1 is the only polynomial containing the term
x1. Thus, the coe�cient in front of the term x1 in the polynomial α1p1+...+αmpm is
α1. It follows that α1 = 0. If we continue in this manner, we can prove by induction
that all the αi's are zero. Therefore, the list is linearly independent and hence, a
basis of Pm(F).

Exercise 11

Suppose U and V are both four-dimensional subspaces of C6. Prove that there exist
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two vectors in U ∩W such that neither of these vectors is a scalar multiple of the
other.

Solution

By Proposition 2.43, we know that

dim(U +W ) = dimU + dimW − dim(U ∩W ) (1)

Since U +W ≤ V , then by Proposition 2.37, dim(U +W ) ≤ dimV = 6. Thus, if
we substitute this inequality and the known values into equation (1), we get:

6 ≥ 4 + 4− dim(U ∩W ),

which can be rearranged into

dim(U ∩W ) ≥ 2.

Thus, if we denote by d the dimension of U ∩W , then there exists a basis v1, ..., vd
of U ∩W . Since it is a basis and d ≥ 2, then we can take the vectors v1, v2 ∈ U ∩W
and assert that they are linearly independent. Therefore, there exist two vectors in
U ∩W such that neither of these vectors is a scalar multiple of the other (by linear
independence).

Exercise 12

Suppose that U and V are subspaces of R8 such that dimU = 3, dimW = 5, and
U +W = R8. Prove that R8 = U ⊕W .

Solution

Since we already know that U + W = R8, it su�ces to prove that U ∩ W = {0}.
To do so, notice that U +W = R8 implies dim(U +W ) = 8. Using the formula in
Proposition 2.43, we get

dimU + dimV − dim(U ∩W ) = 8.

If we plug-in the known values, we get

4 + 4− dim(U ∩W ) = 8,

which can be rearranged into

dim(U ∩W ) = 0.

But the only zero-dimensional vector space is the trivial vector space {0}. Hence,
U ∩W = {0}. Therefore, R8 = U ⊕W .

Exercise 13

Suppose U and W are both �ve-dimensional subspaces of R9. Prove that U ∩W ̸=
{0}.

Solution

Since U +W ≤ R9, then by Proposition 2.37, dim(U +W ) ≤ dimR9 = 9. Using
the formula in Proposition 2.43, we get

dimU + dimV − dim(U ∩W ) ≤ 9.
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If we plug-in the known values, we get

5 + 5− dim(U ∩W ) ≤ 9,

which can be rearranged into

dim(U ∩W ) ≥ 1.

Therefore, U ∩W cannot be {0} since otherwise, its dimension would be 0.

Exercise 14

Suppose V is a ten-dimensional vector space and V1, V2, V3 are subspaces of V with
dimV1 = dimV2 = dimV3 = 7. Prove that V1 ∩ V2 ∩ V3 ̸= {0}.

Solution

First, consider the subspace V1 ∩ V2. Since V1 + V2 ≤ V , then dim(V1 + V2) ≤ 10. It
follows that

dim(V1 ∩ V2) = dimV1 + dimV2 − dim(V1 + V2) ≥ 7 + 7− 10 = 4.

Now, consider the subspace V1 ∩ V2 ∩ V3 as the intersection between V1 ∩ V2 and V3.
Since (V1 ∩ V2) + V3 ≤ V , then dim((V1 ∩ V2) + V3) ≤ 10. It follows that

dim(V1 ∩ V2 ∩ V3) = dim(V1 ∩ V2) + dimV3 − dim((V1 ∩ V2) + V3)

≥ 4 + 7− 10

= 1

Thus, V1 ∩ V2 ∩ V3 cannot be {0} since otherwise, its dimension would be 0.

Exercise 15

Suppose V is �nite-dimensional and V1, V2, V3 are subspaces of V with dimV1 +
dimV2 + dimV3 > 2 dimV . Prove that V1 ∩ V2 ∩ V3 ̸= {0}.

Solution

First, consider the subspace V1∩V2. Since V1+V2 ≤ V , then dim(V1+V2) ≤ dimV .
It follows that

dim(V1 ∩ V2) = dimV1 + dimV2 − dim(V1 + V2) ≥ dimV1 + dimV2 − dimV.

Now, consider the subspace V1 ∩ V2 ∩ V3 as the intersection between V1 ∩ V2 and V3.
Since (V1 ∩ V2) + V3 ≤ V , then dim((V1 ∩ V2) + V3) ≤ dimV . It follows that

dim(V1 ∩ V2 ∩ V3) = dim(V1 ∩ V2) + dimV3 − dim((V1 ∩ V2) + V3)

≥ dimV1 + dimV2 − dim(V1 + V2) + dimV3 − dimV

≥ dimV1 + dimV2 + dimV3 − dimV − dimV

> 2 dimV − 2 dimV

= 0

Thus, V1 ∩ V2 ∩ V3 cannot be {0} since otherwise, its dimension would be 0.
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Exercise 16

Suppose V is �nite-dimensional and U is a subspace of V with U ̸= V . Let n = dimV
and m = dimU . Prove that there exist n − m subspaces of V , each of dimension
n− 1, whose intersection equals U .

Solution

Let u1, ..., um be a basis of U and extend it to a basis

u1, ..., um, v1, ..., vn−m

of V . For each i ∈ {1, ..., n−m}, de�ne the subspace Vi of V as the span of the list
u1, ..., um, v1, ..., vn−m except the vector vi. Hence, Vi is the span of n − 1 linearly
independent vectors so dimVi = n−1. Consider now the intersection V1∩ ...∩Vn−m.
Since each Vi is the span of a list containing a basis of U , then U is a subspace of
all the Vi's. It follows that

U ≤
n−m⋂
i=1

Vi.

Let v be an arbitrary vector in
⋂n−m

i=1 Vi, since
⋂n−m

i=1 Vi ≤ V , then

v = α1u1 + ...+ αmum + βv1 + ...+ βn−mvnm

for some scalars α1, ..., αm, β1, ..., βn−m ∈ F. Let j ∈ {1, ..., n}, since v ∈
⋂n−m

i=1 Vi,
then v ∈ Vj in particular. Since Vj is the span of the ui's and vi's except vj, then Vj

contains
v0 = α1u1 + ...+ αmum + βv1 + ...+ βn−mvnm

where βj = 0. Hence, Vj is a subspace that contains both v and v0, so it follows that

βjvj = v − v0 ∈ Vj.

If βj is non-zero, then vj ∈ Vj. But since Vj already contains all the vectors in
the basis of V except vj, then Vj contains a basis of V . It follows that V ≤ Vj so
n ≤ n−1, a contradiction. Therefore, βj = 0. Since it holds for all j ∈ {1, ..., n−m},
then all the possibly non-zero coe�cients in the linear combination of v are the
coe�cients in front of the ui's. Hence:

v = α1u1 + ...+ αmum + 0 + ...+ 0 ∈ span(u1, ..., um) = U.

Since it holds for all v ∈ ∩n−m
i=1 Vi, then ∩n−m

i=1 Vi ≤ U . Therefore, U = ∩n−m
i=1 Vi, which

proves that there exist n−m subspaces of V , each of dimension n− 1, whose inter-
section equals U .

Exercise 17

Suppose that V1, ..., Vm are �nite-dimensional subspaces of V . Prove that V1+· · ·+Vm

is �nite-dimensional and

dim(V1 + · · ·+ Vm) ≤ dimV1 + · · ·+ dimVm.

Solution

Let i ∈ {1, ...,m} and de�ne di as the dimension of Vi. Since Vi is �nite-dimensional,
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then it has a �nite basis v
(i)
1 , ..., v

(i)
di
. Consider now the list which merges all of these

bases:
v
(1)
1 , ..., v

(1)
d1
, v

(2)
1 , ..., v

(2)
d2
, ..., v

(m)
1 , ..., v

(m)
dm

This new list has length d1 + d2 + ... + dm < ∞. Moreover, it is easy to see that it
is spanning V1 + . . . Vm since for all u ∈ V1 + . . . Vm, we can write u as u1 + ...+ um

where ui ∈ Vi for all i ∈ {1, ...,m}. Hence, for all i ∈ {1, ..., n}, since v(i)1 , ..., v
(i)
di

is a

basis of Vi, then there exist scalars α
(i)
1 , ..., α

(i)
di

∈ F such that

ui = α
(i)
1 v

(i)
1 + ...+ α

(i)
di
v
(i)
di
.

It follows that

u = α
(1)
1 v

(1)
1 + ...+ α

(1)
d1
v
(1)
d1

+ ...+ α
(m)
1 v

(m)
1 + ...+ α

(m)
dm

v
(m)
dm

which proves that the list

v
(1)
1 , ..., v

(1)
d1
, v

(2)
1 , ..., v

(2)
d2
, ..., v

(m)
1 , ..., v

(m)
dm

spans V1 + · · · + Vm. Hence, V1 + · · · + Vm is �nite dimensional since it contains a
�nite spanning list. Moreover, any spanning list must contain a basis. It follows
that there exists a sublist of the one presented that it a basis of V1 + · · ·+ Vm. This
list has a length less than or equal to the length of the presented list (since it is a
sublist) which is equal to d1 + ... + dm. But since it is a basis, then it has length
dim(V1 + · · ·+ Vm). Therefore:

dim(V1 + · · ·+ Vm) ≤ d1 + · · ·+ dm = dimV1 + · · ·+ dimVm.

Exercise 18

Suppose V is �nite-dimensional, with dimV = n ≥ 1. Prove that there exist one-
dimensional subspaces V1, ..., Vn of V such that

V = V1 ⊕ · · · ⊕ Vn.

Solution

Let v1, ..., vn be a basis of V and for each i ∈ {1, ..., n}, de�ne the subspace Vi as
the span of the vector vi. Let's prove that V = V1 ⊕ · · · ⊕ Vn. First, it is clear that
V1+ · · ·+Vn ≤ V . Moreover, for all v ∈ V , since v1, ..., vn is a basis of V , there exist
scalars α1, ..., αn ∈ F such that

v = α1v1 + ...+ αnvn.

For all i ∈ {1, ..., n}, the term αivi ∈ Vi. It follows that v ∈ V1+ · · ·+Vn. Therefore,
V = V1+ · · ·+Vn. To prove that the sum is direct, it su�ces to show that zero has a
unique representation as a sum of elements in the Vi's (Proposition 1.45). But this
follows from the fact the vi's are linearly independent since it is a basis. Therefore,

V = V1 ⊕ · · · ⊕ Vn.
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Exercise 19

Explain why you might guess, motivated by analogy with the formula for the number
of elements in the union of three �nite sets, that if V1, V2, V3 are subspaces of a �nite-
dimensional vector space, then

dim(V1+V2 + V3) =

= dimV1 + dimV2 + dimV3

− dim(V1 ∩ V2)− dim(V1 ∩ V3)− dim(V2 ∩ V3)

+ dim(V1 ∩ V2 ∩ V3).

Then either prove the formula above or give a counterexample.

Solution

Given three �nite sets S1, S2, S3, we can easily derive the following formula for the
cardinality of the union of the three sets:

#(S1 ∪ S2 ∪ S3) = #(S1 ∪ S2) + #S3 −#((S1 ∪ S2) ∩ S3)

= #S1 +#S2 −#(S1 ∩ S2) + #S3 −#((S1 ∩ S3) ∪ (S1 ∩ S3))

= #S1 +#S2 +#S3 −#(S1 ∩ S2)

−#(S1 ∩ S3)−#(S2 ∩ S3) + #(S1 ∩ S2 ∩ S3)

Now, using the correspondence between �nite sets and �nite-dimensional vector
spaces, cardinality and dimension, unions and sums, we could guess that the ana-
loguous fomula for �nite-dimensional vector spaces is

dim(V1 + V2 + V3) = dimV1 + dimV2 + dimV3 − dim(V1 ∩ V2)

− dim(V1 ∩ V3)− dim(V2 ∩ V3) + dim(V1 ∩ V2 ∩ V3)

However, this formula is false. To see why, consider the following counterexample:
Take V1 to be the span of the vector (1, 0) ∈ R2, V2 to be the span of (0, 1) ∈ R2

and V3 to be the span of (1, 1) ∈ R2. Since the three vectors span R2, then

V1 + V2 + V3 = span((1, 0), (0, 1), (1, 1)) = R2.

This implies that dim(V1 + V2 + V3) = 2. Moreover, we also have

dimV1 = dimV2 = dimV3 = 1

and
V1 ∩ V2 = V1 ∩ V3 = V2 ∩ V3 = V1 ∩ V2 ∩ V3 = {0}.

Thus, if the formula for the dimension of the sum of three subspaces was true, we
would have:

2 = 1 + 1 + 1− 0− 0− 0 + 0

which is clearly a contradiction. Therefore, the formula is false.
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Exercise 20

Prove that if V1, V2 and V3 are subspaces of a �nite-dimensional vector space, then

dim(V1 + V2 + V3) =

= dimV1 + dimV2 + dimV3

− dim(V1 ∩ V2) + dim(V1 ∩ V3) + dim(V2 ∩ V3)

3

− dim((V1 + V2) ∩ V3) + dim((V1 + V3) ∩ V2) + dim((V2 + V3) ∩ V1)

3
.

Solution

First, recall that V1+V2+V3 = (V1+V2)+V3. Thus, using the formula in Proposition
2.43, we get

dim(V1 + V2 + V3) = dim(V1 + V2) + dimV3 − dim((V1 + V2) ∩ V3).

Now, applying the same formula to dim(V1 + V2) gives us

dim(V1 + V2 + V3) = dimV1 + dimV2 + dimV3

− dim(V1 ∩ V2)− dim((V1 + V2) ∩ V3). (1)

We can repeat this process by writing V1 + V2 + V3 as (V1 + V3) + V2 to get

dim(V1 + V2 + V3) = dimV1 + dimV2 + dimV3

− dim(V1 ∩ V3)− dim((V1 + V3) ∩ V2). (2)

Again, by writing V1 + V2 + V3 as (V2 + V3) + V1, we get

dim(V1 + V2 + V3) = dimV1 + dimV2 + dimV3

− dim(V2 ∩ V3)− dim((V2 + V3) ∩ V1). (3)

If we add equations (1), (2) and (3) together, we get

3 dim(V1 + V2 + V3) =

= 3dimV1 + 3dimV2 + 3dimV3

− dim(V1 ∩ V2)− dim(V1 ∩ V3)− dim(V2 ∩ V3)

− dim((V1 + V2) ∩ V3)− dim((V1 + V3) ∩ V2)− dim((V2 + V3) ∩ V1).

By dividing by 3 on both sides, we obtain

dim(V1 + V2 + V3) =

= dimV1 + dimV2 + dimV3

− dim(V1 ∩ V2) + dim(V1 ∩ V3) + dim(V2 ∩ V3)

3

− dim((V1 + V2) ∩ V3) + dim((V1 + V3) ∩ V2) + dim((V2 + V3) ∩ V1)

3
.

which is the desired formula.



Chapter 3

Linear Maps

3A Vector Space of Linear Maps

Exercise 1

Suppose b, c ∈ R. De�ne T : R3 → R2 by

T (x, y, z) = (2x− 4y + 3z + b, 6x+ cxyz).

Show that T is linear if and only if b = c = 0.

Solution

( =⇒ ) Suppose that T is linear, then we know from Proposition 3.10 that T0 = 0.
Thus, it follows that

T (0, 0, 0) = (b, 0) = (0, 0)

which implies that b = 0. To prove that c = 0, notice that by linearity of T , we have

T (2, 2, 2) = 2T (1, 1, 1).

If we plug-in the values into the de�nition of T , we get

(4− 8 + 6 + 0, 12 + 8c) = 2(2− 4 + 3 + 0, 6 + c)

which is equivalent to
(2, 12 + 8c) = (2, 12 + 2c).

It follows that 12+8c = 12+2c which can only be true when c = 0. Thus, b = c = 0.
( ⇐= ) Suppose now that b = c = 0, then T (x, y, z) becomes

T (x, y, z) = (2x− 4y + 3z, 6x)

for all x, y, z ∈ R. Let's show that T is linear. First, take (x, y, z), (x′, y′, z′) ∈ R3

and notice that

T ((x, y, z) + (x′, y′, z′)) = T (x+ x′, y + y′, z + z′)

= (2(x+ x′)− 4(y + y′) + 3(z + z′), 6(x+ x′))

= (2x− 4y + 3z + 2x′ − 4y′ + 3z′, 6x+ 6x′)

= (2x− 4y + 3z, 6x) + (2x′ − 4y′ + 3z′, 6x′)

= T (x, y, z) + T (x′, y′, z′)

69
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Moreover, given any λ ∈ R and (x, y, z) ∈ R3, we have

T (λ(x, y, z)) = T (λx, λy, λz)

= (2(λx)− 4(λy) + 3(λz), 6(λx))

= (λ(2x− 4y + 3z), λ(6x))

= λ(2x− 4y + 3z, 6x)

= λT (x, y, z)

Therefore, T is linear.

Exercise 2

Suppose b, c ∈ R. De�ne T : P(R) → R2 by

Tp =

(
3p(4) + 5p′(6) + bp(1)p(2),

∫ 2

−1

x3p(x)dx+ c sin p(0)

)
.

Show that T is linear if and only if b = c = 0.

Solution

( =⇒ ) Suppose that T is linear, then if we let p be the constant polynomial equal
to π/2, we get that T must satisfy

T (2p) = 2Tp.

If we rewrite this using the de�nition of T and p, we obtain(
3π + bπ2, π

∫ 2

−1

x3dx+ c sin(π)

)
= 2

(
3
π

2
+ b

π2

4
,
π

2

∫ 2

−1

x3dx+ c sin
(π
2

))
which can be simpli�ed to(

3π + bπ2, π

∫ 2

−1

x3dx

)
=

(
3π + b

π2

2
, π

∫ 2

−1

x3dx+ c

)
.

This gives us the following system of equations:{
3π + bπ2 = 3π + bπ

2

2

π
∫ 2

−1
x3dx = π

∫ 2

−1
x3dx+ c

=⇒

{
b = 1

2
b

c = 0
=⇒ b = c = 0.

( ⇐= ) Suppose that b = c = 0, then for all p ∈ P(R), we have

Tp =

(
3p(4) + 5p′(6),

∫ 2

−1

x3p(x)dx

)
.

Thus, for any p1, p2 ∈ P(R), we get

T (p1 + p2) =

(
3(p1 + p2)(4) + 5(p1 + p2)

′(6),

∫ 2

−1

x3(p1 + p2)(x)dx

)
=

(
3(p1(4) + p2(4)) + 5(p′1(6) + p′2(6)),

∫ 2

−1

x3(p1(x) + p2(x))dx

)
=

(
3p1(4) + 3p2(4) + 5p′1(6) + 5p′2(6),

∫ 2

−1

x3p1(x)dx+

∫ 2

−1

x3p2(x)dx

)
=

(
3p1(4) + 5p′1(6),

∫ 2

−1

x3p1(x)dx

)
+

(
3p2(4) + 5p′2(6),

∫ 2

−1

x3p2(x)dx

)
= Tp1 + Tp2.
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Similarly, for all λ ∈ R and p ∈ P(R), we have

T (λp) =

(
3(λp)(4) + 5(λp)′(6),

∫ 2

−1

x3(λp)(x)dx

)
=

(
3λp(4) + 5λp′(6),

∫ 2

−1

x3λp(x)dx

)
=

(
λ(3p(4) + 5p′(6)), λ

∫ 2

−1

x3p(x)dx

)
= λ

(
3p(4) + 5p′(6),

∫ 2

−1

x3p(x)dx

)
= λTp.

Therefore, T is linear.

Exercise 3

Suppose that T ∈ L(Fn,Fm). Show that there exist scalars Aj,k ∈ F for j = 1, ...,m
and k = 1, ..., n such that

T (x1, ..., xn) = (A1,1x1 + · · ·+ A1,nxn, ..., Am,1x1 + · · ·+ Am,nxn)

for every (x1, ..., xn) ∈ Fn.

Solution

Denote by e1, ..., en the standard basis of Fn and by f1, ..., fm the standard basis for
Fm, then for all k ∈ {1, ..., n}, there exist scalars A1,k, ..., Am,k ∈ F such that

Tek = A1,kf1 + · · ·+ Am,kfm.

Therefore, by linearity, for all (x1, ..., xn) ∈ Fn:

T (x1, ..., xn) = x1Te1 + · · ·+ xnTen

= x1(A1,1f1 + · · ·+ Am,1fm) + · · ·+ xn(A1,nf1 + · · ·+ Am,nfm)

= (A1,1x1 + · · ·+ A1,nxn)f1 + · · ·+ (Am,1x1 + · · ·+ Am,nxn)fm

= (A1,1x1 + · · ·+ A1,nxn, ..., Am,1x1 + · · ·+ Am,nxn).

Therefore, any linear transformation has this form.

Exercise 4

Suppose T ∈ L(V,W ) and v1, ..., vm is a list of vectors in V such that Tv1, ..., T vm
is a linearly independent list in W . Prove that v1, ..., vm is linearly independent.

Solution

To prove that v1, ..., vm is linearly independent, take arbitrary scalars α1, ..., αm ∈ F
such that

α1v1 + ...+ αmvm = 0.

By evaluating on both sides by T , we get by linearity of T the following equation:

α1Tv1 + ...+ αmTvm = 0.



CHAPTER 3. LINEAR MAPS 72

But since the list Tv1, ..., T vm is a linearly independent in W , then

α1 = ... = αm = 0

which proves that v1, ..., vm is linearly independent.

Exercise 5

Prove that L(V,W ) is a vector space, as was asserted in 3.6.

Solution

We already proved in Section 1B Exercise 7 that for any nonempty set S and vector
space U , the set US equipped with the usual addition and scalar multiplication is a
vector space. Hence, if we let S = V and U = W , we already know that the set of
functions from V tp W is a vector space. Since L(V,W ) ⊂ W V , then it su�ces to
show that L(V,W ) is a subspace.
First, notice that L(V,W ) is non-empty since it contains the additive identity map:
the constant zero map is linear. Given two linear maps T1, T2 ∈ L(V,W ), we can
show that T1+T2 ∈ L(V,W ) by proving that it is a linear map from V to W . Hence,
take arbitrary x, y ∈ V and λ ∈ F to get:

(T1 + T2)(x+ y) = T1(x+ y) + T2(x+ y)

= T1(x) + T1(y) + T2(x) + T2(y)

= (T1 + T2)(x) + (T1 + T2)(y),

and

(T1 + T2)(λx) = T1(λx) + T2(λx)

= λT1(x) + λT2(x)

= λ(T1(x) + T2(x))

= λ(T1 + T2)(x).

Thus, L(V,W ) is closed under addition. Similarly, given a linear map T ∈ L(V,W )
and α ∈ F, we get that αT ∈ L(V,W ) because for all x, y ∈ V and λ ∈ F, we have
the following:

(αT )(x+ y) = αT (x+ y)

= α(T (x) + T (y))

= αT (x) + αT (y)

= (αT )(x) + (αT )(y)

and

(αT )(λx) = αT (λx)

= αλT (x)

= λαT (x)

= λ(αT )(x).

Therefore, L(V,W ) is a vector space since it is a subspace of W V .
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Exercise 6

Prove that the multiplication of linear maps has the associative, identity and dis-
tributive properties asserted in 3.8.

Solution

� (Associativity) Let V1, V2, V3, V4 be vector spaces and T1 : V1 → V2, T2 : V2 →
V3 and T3 : V3 → V4 be linear maps. Associativity follows from the fact that
for all x ∈ V1:

((T1T2)T3)(x) = (T1T2)(T3(x))

= T1(T2(T3(x)))

= T1(T2T3(x))

= (T1(T2T3))(x).

Since it holds for all x ∈ X, then (T1T2)T3 = T1(T2T3).

� (Identity) Let V and W be vector space. Consider the identity map IV : V →
W and let's show that it is indeed linear. For all x, y ∈ V :

IV (x+ y) = x+ y = IV (x) + IV (y)

and for any λ ∈ F and x ∈ V :

IV (λx) = λx = λIV (x).

Therefore, IV is linear. To prove that it is the multiplicative identity in
L(V,W ), let T : V → W be a linear map and x ∈ V , then

(IV T )(x) = IV (Tx) = Tx

and
(TIV )(x) = T (IV x) = Tx

so IV T = TIV = T for all linear maps T ∈ L(V,W ).

� (Distributivity 1) Let U, V,W be vector spaces, S1, S2 ∈ L(V,W ) and T ∈
L(U, V ), then for all x ∈ V , we have

[(S1 + S2)T ](x) = (S1 + S2)(Tx)

= S1(Tx) + S2(Tx)

= (S1T )(x) + (S2T )(x)

= [S1T + S2T ](x).

Since it holds for all x ∈ U , then (S1 + S2)T = S1T + S2T .

� (Distributivity 2) Let U, V,W be vector spaces, S ∈ L(V,W ) and T1, T2 ∈
L(U, V ), then for all x ∈ V and by linearity of S, we have

[S(T1 + T2)](x) = S((T1 + T2)(x))

= S(T1(x) + T2(x))

= S(T1(x)) + S(T2(x))

= (ST1)(x) + (ST2)(x)

= [ST1 + ST2](x).
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Since it holds for all x ∈ U , then S(T1 + T2) = ST1 + ST2.

Exercise 7

Show that every linear map from a one-dimensional vector space to itself is multi-
plicative by some scalar. More precisely, prove that if dimV = 1 and T ∈ L(V ),
then there exists λ ∈ F such that Tv = λv for all v ∈ V .

Solution

Since dimV = 1, then there is a v0 ∈ V such that V = span(v0). We have Tv0 ∈
span(v0) so there is a λ ∈ F satisfying Tv0 = λv0. Take v ∈ V , since v ∈ span(v0),
then there is an α ∈ F such that v = αv0. Thus:

Tv = Tαv0 = αTv0 = αλv0 = λv.

Exercise 8

Give an example of a function φ : R2 → R such that

φ(av) = aφ(v)

for all a ∈ R and all v ∈ R2 but φ is not linear.

Solution

Consider the function φ : R2 → R de�ned by φ(x, y) = 3
√

(x+ y)3, then for all
x, y ∈ R and a ∈ R, we have

φ(ax, ay) = 3
√

(ax+ ay)3

= 3
√

a3(x+ y)3

= a 3
√

(x+ y)3

= aφ(x, y).

However, notice that φ(1, 0) = φ(0, 1) = 1 but φ(1, 1) = 3
√
2 so φ(1, 1) ̸= φ(1, 0) +

φ(0, 1) so φ is not linear.

Exercise 9

Give an example of a function φ : C → C such that

φ(w + z) = φ(w) + φ(z)

for all w, z ∈ C but φ is not linear. (Here, C is thought of as a complex vector space.)

Solution

Consider the function φ : C → C de�ned by φ(z) = Re(z), then for all w, z ∈ C,
we know that

Re(w + z) = Re(w) + Re(z).

However, Re(i) = 0 and iRe(1) = i so Re(i · 1) ̸= iRe(1). Therefore, φ is not linear.

Exercise 10

Prove or give a counterexample: If q ∈ P(R) and T : P(R) → P(R) is de�ned by
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Tp = q ◦ p, then T is a linear map.

Solution

Consider the following counterexample: Take q = x2 and de�ne the map T : P(R) →
P(R) by

Tp = q ◦ p = p2

for all p ∈ P(R). Notice that T (x + 1) = x2 + 2x + 1 but T (x) + T (1) = x2 + 1.
Thus, T (x+ 1) ̸= T (x) + T (1) so T is not a linear map.

Exercise 11

Suppose V is a �nite-dimensional vector space and T ∈ L(V ). Prove that T is a
scalar multiple of the identity if and only if ST = TS for all S ∈ L(V ).

Solution

First, let T be a scalar multiple of the identity, then there is a λ ∈ F such that
Tv = λv for all v ∈ V . Let S be an arbitrary linear map from V to V , then for all
v ∈ V :

(ST )v = S(Tv) = S(λv) = λSv = T (Sv) = (TS)v.

Since it holds for all v ∈ V , then ST = TS.
To prove that the converse holds, �x a basis v1, ..., vn of V and for all i between 1
and n, de�ne Si as the linear map satisfying Siv1 = vi and Sivk = 0 for all k ̸= 1
(such a linear map is well-de�ned and unique by Lemma 3.4). Let T ∈ L(V ), then
for all i between 1 and n, there exist scalars Ai,1, ..., Ai,n ∈ F such that

Tvi = Ai,1v1 + ...+ Ai,nvn.

Suppose that T satis�es ST = TS for all S ∈ L(V ), then in particular, for all �xed
i between 1 and n, we have (SiT )v1 = (TSi)v1. Using the de�nitions and properties
of Si and T , we get that

(SiT )v1 = (TSi)v1 =⇒ Si(A1,1v1 + ...+ A1,nvn) = Tvi

=⇒ A1,1vi = Ai,1v1 + ...+ Ai,nvn

and by uniqueness of representations of vectors in V as linear combinations of the
basis, we get that Ai,j = 0 for all i ̸= j and A1,1 = Ai,i. Thus, if we let λ = A1,1, we
obtain that for all i,

Tvi = Ai,1v1 + ...+ Ai,nvn = λvi.

Therefore, it follows that T is equal to λ times the identity map, i.e., a scalar mul-
tiple of the identity.

Exercise 12

Suppose U is a subspace of V with U ̸= V . Suppose S ∈ L(U,W ) and S ̸= 0 (which
means that Su ̸= 0 for some u ∈ U). De�ne T : V → W by

Tv =

{
Sv if v ∈ U,

0 if v ∈ V and v /∈ U.

Prove that T is not a linear map on V .
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Solution

Since U ̸= V , then there is a v0 ∈ V \ U . The fact that S is not the zero trans-
formation implies that there is a vector u ∈ U such that Su ̸= 0. Moreover, since
U is a subspace and u ∈ U , then v0 + u ∈ U implies that v0 ∈ U . A contradiction
that shows that u + v0 ∈ V \ U . Thus, by de�nition of T , we have Tv0 = 0 and
T (v0 + u) = 0. If T is linear, then we would get

0 = T (v0 + u) = Tv0 + Tu = Su.

But this is a contradiction since we de�ned u such that Su ̸= 0. Thus, no such
linear transformation T exists.

Exercise 13

Suppose V is �nite-dimensional. Prove that every linear map on a subspace of V can
be extended to a linear map on V . In other words, show that if U is a subspace of
V and S ∈ L(U,W ), then there exists T ∈ L(V,W ) such that Tu = Su for all u ∈ U .

Solution

Let u1, ..., un be a basis of U , then it can be extended to a basis u1, ..., um of V where
m ≥ n. De�ne T on this basis as follows: Tui = Sui if i ≤ n and Tui = 0 otherwise.
By Lemma 3.4, T is a well-de�ned linear map from V to W . Let's now prove that
T extends S. Let u ∈ U , then there exist scalars α1, ..., αn ∈ F such that

u = α1u1 + ...+ αnun.

Applying T on both sides an using the linearity of T , we get

Tu = α1Tu1 + ...+ αnTun.

By construction of T , we know that Tui = Sui for all i between 1 and n:

Tu = α1Su1 + ...+ αnSun.

Finally, by linearity of S:

Tu = S(α1u1 + ...+ αnun) = Su.

It follows that T is linear map that extends S on V .

Exercise 14

Suppose V is �nite-dimensional with dimV > 0, and supposeW is in�nite-dimensional.
Prove that L(V,W ) is in�nite-dimensional.

Solution

Let v1, ..., vn be a basis of V . From Section 2A Exercise 17, we know that there
exists a sequence w1, w2, ... in W such that the list w1, ..., wm is linearly independent
for all m. For all k, de�ne the map Tk : V → W to be the unique linear map such
that Tkv1 = wk and Tkvi = 0 for all i between 2 and n. Let's show that for all m,
the list T1, ..., Tm is linearly independent in L(V,W ). Let α1, ..., αn ∈ F be scalars
such that

α1T1 + ...+ αmTm = 0,
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then in particular, if we plug-in v1, we get

α1w1 + ...+ αmwm = 0.

By our assumption on the sequence w1, w2, ..., we know that it implies that α1 =
... = αm = 0. Thus, the list T1, ..., Tm is linearly independent. Since it holds for all
m, then by Section 2A Exercise 17, L(V,W ) is in�nite-dimensional.

Exercise 15

Suppose v1, ..., vm is a linearly dependent list of vectors in V . Suppose also that
W ̸= {0}. Prove that there exist w1, ..., wm ∈ W such that no T ∈ L(V,W ) satis�es
Tvk = wk for each k = 1, ...,m.

Solution

If the list has length 1, then v1 must be zero vector so it su�ces to take w1 ∈ W \{0}.
Hence, every linear map T would map v1 to zero which is di�erent than w1.
Assume that m > 1, since the list v1, ..., vm is linearly independent, then without
loss of generality, we can assume that vm can be written as a linear combination of
the other vectors. Thus, let w1 = ... = wm−1 = 0 and wm ∈ W \ {0} (which must
exists since W ̸= {0}). Let T be a linear map and suppose that Tvk = wk for each
k = 1, ...,m. However, since there exist scalars α1, ..., αm−1 such that

vm = α1v1 + ...+ αm−1vm−1,

then by applying T on both sides, we get

Tvm = α1Tv1 + ...+ αm−1Tvm−1 = 0 ̸= wm.

Therefore, no linear map T satis�es Tvk = wk for each k = 1, ...,m.

Exercise 16

Suppose V is �nite-dimensional with dimV > 1. Prove that there exist S, T ∈ L(V )
such that ST ̸= TS.

Solution

We know from Exercise 11 that the linear maps that commute with every other
linear map are precisely the scalar multiples of the identity map. Hence, it su�ces
to show that there exists a linear map that is not a scalar multiple of the identity.
Let v1, ..., vn be a basis of V (so n ≥ 2) and de�ne T : V → V to be the unique linear
map such that Tu1 = u1 and Tui = 0 for i between 2 and n. Such a transformation
exists by Lemma 3.4. If T was a scalar multiple of the identity, then Tu1 = u1 would
imply that T is the identity since u1. However, Tu2 = 0 even if u2 ̸= 0. Thus, by
contradiction, T is not a scalar multiple of the identity. Therefore, there must be a
linear map S such that ST ̸= TS.

Exercise 17

Suppose V is �nite-dimensional. Show that the only two-sided ideals of L(V ) are
{0} and L(V ).
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Solution

Let E be a two-sided ideal of L(V ), if E = {0}, then we are done. Assume that
E ̸= {0}, then there must be a non-zero linear map T in E and scalars {Ai,j} ⊂ F
such that

Tvj = A1,jv1 + ...+ An,jvn

for all j between 1 and n. Since T is non-zero, then it follows that there exist i0 and
j0 between 1 and n such that Ai0,j0 ̸= 0. Moreover, for all i and j between 1 and n,
de�ne the linear map Si,j ∈ L(V ) by

Si,jvk =

{
vi k = j,

0 k ̸= j.

Consider the map 1
Ai0,j0

Si0,i0TSj0,j0 , since E is a two-sided ideal, then this map

belongs to E . Let k be an integer between 1 and n, if k ̸= j0, then

1

Ai0,j0

Si0,i0TSj0,j0vk =
1

Ai0,j0

Si0,i0T (0) = 0,

and if k = j0, then

1

Ai0,j0

Si0,i0TSj0,j0vk =
1

Ai0,j0

Si0,i0Tvj0

=
1

Ai0,j0

Si0,i0(A1,j0v1 + ...+ An,j0vn)

=
1

Ai0,j0

Ai0,j0vi0

= vi0 .

Thus, by de�nition of the maps Si,j's and by uniqueness part of Lemma 3.4, we get
that

1

Ai0,j0

Si0,i0TSj0,j0 = Si0,j0 .

Hence, the map Si0,j0 is in E . From this, we get that for all i and j between 1 and
n, the map Si,i0Si0,j0Sj0,j is in E as well. But notice that for all k between 1 and n,
if k ̸= j, then

Si,i0Si0,j0Sj0,jvk = 0,

and k = j, then

Si,i0Si0,j0Sj0,jvk = Si,i0Si0,j0vj0 = Si,i0vi0 = vi.

Thus, again, by the uniqueness part of Lemma 3.4 and since it holds for all i, j, then
Si,j ∈ E for all i, j. We are now ready to show that E = L(V ). Since E is a subspace
of L(V ), then it su�ces to prove that L(V ) ⊂ E . Let S ∈ L(V ), then there exist
scalars {Bi,j}i,j ⊂ F such that

Svj = B1,jv1 + ...+Bn,jvn,

for all j. Consider the map S̃ de�ned by

S̃ =
n∑

i=1

n∑
k=1

Bi,kSi,k.
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Since E is a subspace that contains all the Si,j's, then S̃ ∈ E . Moreover, notice that
for all j,

S̃vj =
n∑

i=1

n∑
k=1

Bi,kSi,kvj =
n∑

i=1

Bi,jvi = Svj.

Since it holds for all j, then by Lemma 3.4, we have that S = S̃ ∈ E . Since it holds
for all S ∈ L(V ), then L(V ) = E . Therefore, the only two-sided ideals of L(V ) are
{0} and L(V ).
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3B Null Spaces and Ranges

Exercise 1

Give an example of a linear map T with dim nullT = 3 and dim rangeT = 2.

Solution

TODO

Exercise 2

Suppoe S, T ∈ L(V ) are such that rangeS ⊂ nullT . Prove that (ST )2 = 0.

Solution

TODO

Exercise 3

Suppose v1, ..., vm is a list of vectors in V . De�ne T ∈ L(Fm, V ) by

T (z1, ..., zm) = z1v1 + ...+ zmvm.

(a) What property of T corresponds to v1, ..., vm spanning V ?

(b) What property of T corresponds to the list v1, ..., vm being linearly indepen-
dent?

Solution

TODO

Exercise 4

Show that {T ∈ L(R5,R4) : dim nullT > 2} is not a subspace of L(R5,R4).

Solution

TODO
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3C Matrices

Exercise 1

TODO

Solution

TODO
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3D Invertibility and Isomorphisms

Exercise 1

TODO

Solution

TODO
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3E Products and Quotients of Vector Spaces

Exercise 1

TODO

Solution

TODO



CHAPTER 3. LINEAR MAPS 84

3F Duality

Exercise 1

TODO

Solution

TODO
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