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Preface

The goal of this document is to share my personal solutions to the exercises in
Measure, Integration & Real Analysis by Sheldon Axler during my reading.

What results will I assume and what results am I going to prove in this document?
Most of the time, I will try to state precisely some results that I am going to
use without proof. More generaly, T will assume that the reader of this document
is already familiar with classical analysis such as the results that can be found
in the first chapters of Understanding Analysis by Stephen Abbott or any first
class introduction to analysis. For example, I will use without proof the following
properties of the infimimum and supremum:

1. sup(A+ B) =sup{a+b:a€ A, be B} =supA+supB
2. inf(A+ B)=infla+b:ac A be By =inf A+inf B
3. supA<supBif ACB

4. nfA>infBif AcCB

5. —sup A = inf(—A)

where A and B are arbitrary bounded subsets of R.

As a disclaimer, the solutions are not unique and there will probably be better

or more optimized solutions than mine. Feel free to correct me or ask me anything
about the content of this document at the following address : samy.lahloukamal@mecgill.ca
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Chapter 1

Riemann Integration

1A Review : Riemann Integral

Exercise 1
Suppose f : [a,b] — R is a bounded function such that

L(f, P,[a,b]) = U(f, P,[a,b])
for some partition P of [a,b]. Prove that f is a constant function on [a, b].

Solution

Let’s prove this on the number of subintervals of [a,b] of the partition P = {z, <
1 < ... < z,}. For our base case, let a < b € R, f : [a,b] — R be an arbitrary
bounded function and P = {a, b} be the trivial partition. Suppose that

L(f, P, la,0]) = U(f, P, [a, b])

Notice that it is equivalent to

inf f =sup f
[a,b] [a,b]

If we let ¢ := supy, ; f, then for all x € [a, b], we have

c=inf f < f(z) <supf=c
[a,0] [a,b]

Hence, f = c on [a, b] which proves the base case.

For the inductive step, suppose that there is a natural number k such that for all
a < b€ R and for all bounded f : [a,b] — R, then f is constant on [a, b] whenever
L(f,P,[a,b]) = U(f, P,|a,b]) where P is a partition splitting [a,b] into k subinter-
vals. Let a < b € R be real numbers, f be an arbitrary bounded function on [a, 0]
and P = {a = 29 < 1 < ... < 2x11 = b} be an arbitrary partition splitting [a, 0]
into k+1 subintervals. Suppose that L(f, P, [a,b]) = U(f, P, [a,b]) holds. Let’s show
that f is constant on [a, b].

First, consider the functions f; := f|u, and fo := f|m,5 and the partitions
P ={a=xy <z <..<ua}and Py := {x} < x54; = b} partitioning [a, z;] and
[z, b] respectiviely. Notice that L(f, P, [a,b]) = U(f, P, [a,b]) is actually equivalent
to L(f1, P, [a,zx]) = U(f1, P1, [a, x]) and L(fs, Ps, [k, b]) = U( f2, Ps, [z, ]).

It follows by our induction hypothesis that there exist constants ¢; and ¢, in R such

3
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that fi = ¢; and f3 = ¢y on there respetive domains. By definition of f; and f5, we
get that f(x) = ¢; for all z € [a, zg] and f(z) = ¢, for all x € [z, b]. By plugging-in
T = xy, we get that ¢; = co. It follows that f is constant on [a, b].

Exercise 2
Suppose a < s <t < b. Define f : [a,b] - R by

f(x):{l ifs<ax<t,

0 otherwise
Prove that f is Riemann integrable on [a, b] and that fab f=t—s.

Solution

Let € > 0 and consider the partition P, = {a <t—§ <t+5 <s—5 <s+5 <b}. To
make sure that P, is well defined, take € small enough so that a <t—5,1+5 <s—3
and s+ 5 < b, i.e., consider € to be stricly smaller than min(2(t —a), s—t, 2(b—s)).
Hence:

U(f,la,0]) <U(f, P, [a,b])
:(t—f—a) sup f+(t+£—t+£) sup f

2 [at—£] 2 27 - 4]
€ € € €
+(s—5—t—5) sup f+(s+5—s+5) sup f
2 2 [t+5,5—5] 2 2 [s—5,5+5]
€
+(b—s—=) sup f
2" [st+£,0)
:(t—%—a)-O+e-1+(s—t—e)-1+e-1+(b—s—g)-O
=s—t+e

But U(f,[a,b]) don’t depend on € so it follows that U(f, [a,b]) < s —t. Similarly,
by construction of P,, we can prove that L(f,[a,b]) > s — ¢ which gives us

s—1< L(f7[a7b]) < U(fa[aabD <s—t
which gives us
U(fv [avb]) = L(fa [avb]) =s5—1
Therefore, f is Riemann integrable and f: f=s—1.

Exercise 3
Suppose [ : [a,b] — R is a bounded function. Prove that f is Riemann integrable
if and only if for each € > 0, there exists a partition P of [a, b] such that

U(f, P,[a,b]) — L(f, P, [a,b]) <€

Solution

( = ) Suppose that f is Riemann integrable, then by definition, U(f, [a,b]) =
L(f,la,b]). Let e > 0, then by properties of the infimimum and the supremum,
there exist partitions P; and P» of [a,b] such that

U(f, Py, a,b]) < U(f, [a,b]) +§



CHAPTER 1. RIEMANN INTEGRATION 5

and
L(f,[a,b]) — % < L(f, Py, a,b])

consider P = P; U P,, then:

U(f,P, [CL?b]) —L(f,P, [avb]) < U(f,Pl,[a,b]) _L(faPQa[aab])

<U(f.lab) + 5 = L(f.[a.0) + 5

= €

which proves the first direction of the equivalence.
( <= ) Suppose that for all €, there exists a partition P of [a,b] such that

U(f,P,[a,b])—L(f,P,[a,b]) <€

Then, since for all partitions P of [a,b] we have U(f,[a,b]) < U(f, P, [a,b]) and
L(f, P,[a,b]) < L(f,[a,b]), then it follows that for all €, we have

U(fa [CL, b]) - L(fa [a’ b]) < U(f>P’ [a’ b]) - L(fv P> [CL»bD <€

for some partition P by our assumption. Since it holds for all ¢ > 0 and since
U(f,|a,b]) — L(f,[a,b]) is positive, then it follows that U(f, [a,b]) = L(f, [a,b]). By
definition, this means that f is Riemann integrable.

Exercise 4
Suppose, f,g : [a,b] — R are Riemann integrable. Prove that f + g is Riemann

integrable on [a, b] and
b b b
/<f+g)=/ f+/ g
Solution

First, consider the following properties of the upper and lower Riemann sums tat
we will prove as follows

[ sup }(f +g) = sup{f(z) + g(v) : x € [v;, Tiy1]}
<sup{f(z) +g(y) : 7,y € [vi,zi+1]}
=sup({f(z) : v € [z, vir1]} +{9(2) : v € [15, 2,11]})
= sup{f(z) : ¥ € [z;, zi1]} + sup{g(2) : @ € [z;, 21|}
= sup f+ sup g

[25,@541] [©5,mit1]

where [z;,x;11] is an arbitrary closed interval inside [a,b]. Similarly, we also have
the following property for the infinimum:

inf (f+¢g)> inf f+ inf ¢

[24,24 1] [, 1] [z, 1]
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Thus, given a partition P of [a, b], we have

U(f+9, P la,b]) =D (w41 — xi)[ sup ](f +9)
i=1 T, Ti41

n

<D (wiyr —@)( sup f+ sup g)

i=1 [@i,@i+1] (i, Tit1]
= Z(xi+1 - :Ez) Sup f + Z(SE’H‘l — LIj‘l) Sup g
=1 [i@ita] i=1 [z5,2i41]

= U(fv P, [av b]) + U(g7 P, [av b])
and similarly:
L(f + g, P,[a,b]) = L(f, P,]a,b]) + L(g, P, [a, b])

These are the main inequalities we will use to prove the additivity of the Riemann
integral.

Let’s now prove that f + g is Riemann integrable on [a, b] using the criterion proved
in the previous exercise. Let € > 0, then by the criterion, there exist partitions P
and P, of [a, b] such that

U(f, Py, la,b) = L(f, Py, [a,b]) <

N

U(g,Pg7 [CL?b]) - L(ga Pg, [a,b]) < g

Consider now P to be the merging of P; and P, i.e., let P = P; U Py, then we get

U(f,P,[a,b])—L(f,P,[a,b]) <

NN e

U(ga P7 [avb]) - L(ga P7 [CL, bD <
Thus, by the previous inequalities:

U(f+g,P [a,b]) = L(f + g, P,[a,b]) < U(f, P, [a,b]) + Ulg, P, [a, b])
— L(f, P, [a,0]) — L(g, P, [a, b])
= [U(f, P,[a,b]) = L(f, P, [a, 0])]
+[U(g, P, [a,b]) = L(g, P, [a, ])]

<e+e
2 2
€

which proves the Riemann integrability of f + g.
Now, let’s proves equality between fj(f + ¢g) and fabf + fab g. To do so, let € > 0,
then there exist partitions P; and P» of [a, b] satisfying

U(f.la.b]) +5 > U, Py, [a.b])

and

Ulg.[a.8]) + 5 > Ulg. Py, [o. 1)
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If we consider P = P, U P, we get

/Xf+m:47f+%mwb

(
(f +9, P [a,0])

(f, P, [a,b]) + Ulg, P, [a, b])
<f7 Pla [Cl, b]) + U(Qa P27 [aab])
(

filab]) + 5+ Ulg fa ) + 5

U
U
U

€
v 2

:/abf+/abg—|—e

But € is arbitrary and nothing depends on it so by letting e — 0, we get

/ab(f+g)§/abf+/abg (1)

For the reverse inequality, again, let € > 0, then there are paritions P, and P, of
la, b] satisfying

L(fv [CL, b]) < L(f7 Ph [CL, b]) +5

and
L(g,[a,b]) < L(g, P», [a,b]) + 5

Thus, by letting P = P, U P,, we get

t/f+/g— b)) + L(g, [a,b)

< L(f, Py, [a,b]) + g v L(g, Py, [a,b]) + <
= L(f, P,[a,b]) + L(g, P,[a,b]) + €

< L(f+g,Pa,b])+e€

< L(f+g,la,b])+e

:/ (f+g)+e
/f+/g</ (f+9) (2)

Therefore, combining (1) and (2) gives us

/a(f+g)=/af+/ag

Letting ¢ — 0 gives us

Exercise 5
Suppose f : [a,b] — R is Riemann integrable. Prove that the function —f is
Riemann integrable on [a, b] and

/ab(—f):—/abf
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Solution
First, notice that for any partition P of [a, b], we have

n

=U(f, P la,b]) = — Z(%‘H —x;) sup f

i=1 [xi7$i+l]
= Z(%’H —x;) | — sup f
i—1 [@s,7i41]

Similarly, we also have

_L<f7 P7 [a7 b]) = U(_f7 P7 [a7 b])

Therefore, we get that

f is Riemann integrable = U(f,[a,b]) = L(f,[a,b])
= —U(f,la,b]) = —L(f, [a,b])
= —inf{U(f, P,[a, b))} = —sup{L(f P, [a,b])}
— Sl;p{—U(f>Pa [a b])} :H}%‘f{—L<f,P, [a’ b])}
— sup{L(~f. P.[a,b])} = if{U(~, P, .0}
- L(_fu [av b]) - U(_f7 [a7 bD
—> —f is Riemann integrable

Hence, by the previous exercise, we get

[+ [en=[urem=[o=0
which directly implies ) .
[en=-[1

Exercise 6
Suppose [ : [a,b] — R is Riemann integrable. Suppose ¢ : [a,b] — R is a function
such that g(x) = f(z) for all except finitely many = € [a, b]. Prove that g is Riemann

integrable on [a, b] and
b b
fo= ]
Solution

Let’s prove this by induction on the number of the number of elements in the set
{z € la,b] : g(x) # f(x)}. For the base case, let g : [a,b] — R be a function which
differs from f at exactly one point xy € [a,b]. Consider the function h = f—g defined
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on [a,b] and notice that h is zero everywhere except for © = z5. Now, consider the
following cases, if xy € (a,b), then to prove that h is Riemann integrable, let € > 0,
define €y = €/4|hy| and consider the partition P = {a,x¢ — €, xg + €0, b}. Then, we
get

U(f,P,[a,b])—L(f,P,[a,b]):( sup f— inf f) (xU_EO_a)

la,z0—e€0] [a,z0—¢0]

+< sup  f— inf f>($0+€0—$0+€0)
[

20 —€0,204€0] [ro—e€0,T0+¢€0]

—i—( sup f— inf f)(b—xo—eo)
[

zo+e€0,b] [zo-+eo,b]
=0- (l’o — €) — Cl) + 2‘h($0>’€0 +0- (b— Xo — 60)

_ 2|h(fﬂ0)|m

G
T2
<€
Thus, by the criterion proved in exercise 3, h is Riemann integrable. Since g = f—h,
then g is Riemann integrable as well by exercises 4 and 5.

Now, suppose without loss of generality that h(z) is positive, then L(f, P, [a,b]) =0
for any partition P of [a,b]. Hence, if we rewrite the last inequality, we get that

U(f, P, a,b]) <e

for some partition P and for all ¢ > 0. Hence, for all ¢ > 0, there is a partition P
such that
= L(f, P,[a,b]) U(f,la,b]) < U(f, P, la,b]) <€

It follows that

b
/ h=U(f[a, b)) =

by letting € — 0. Thus, by exercise 4 and 5, we get

[f=/j<h+g>=/abh+/abg=/abg

which proves the base case when zy € (a,b). When zy € {a,b}, the proof is the
same up to a small modification of the partition P given e > 0. If oy = a, define
P={a,a+ TRl b} and if zo = b, define P = {a,b — Senll b}

For the inductive hypothems suppose that there is a k € Z* Such that any function
that differs from a Riemann integrable function f at precisely k points is still Rie-
mann integrable and has its integral to be equal to fab f. Now, let g : [a,b] — R be
an arbitrary function that differs from f at precisely k points xq, xo, ..., x+1. From
this, consider the function g : [a,b] — R defined by

go(x) = {f(w) T = Tk+1

g(x) otherwise
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Notice that gy differs from f at precisely k points. Hence, by the inductive hypoth-
esis, go is integrable and its integral is the same as f. Moreover, g differs from gq at
precisely one point, hence, by the base case, since gy is Riemann integrable, then g
is Riemann integrable as well and

b b b
/ 9= / o = / f
which proves our claim by induction.

Exercise 7
Suppose f : [a,b] — R is a bounded function. For n € Z*, let P, denote the
partition that divides [a, b] into 2™ intervals of equal size. Prove that

L(f.[a,¥)) = lim L(f. Py, [a,8]) and U(f,[a,b]) = lim U(/, P,.[a.b)
Solution
Let’s prove it for the lower Riemann integral. Since P,.; C P, for all n € ZT,
then {L(f, P,,[a,b])}, is an increasing sequence that is bounded by L(f,[a,b]),
thus, it converges to its supremum. Hence, it suffices to prove that L(f,[a,b]) =
sup,, L(f, Py, a, b]).
Let € > 0, then by properties of the supremum, there exists a partition P = {a =
xg, ..., Ty = b} of [a,b] that satisfies

€

L(f. P [ab]) > L(f,[a,b]) —

Let k € [1,m — 1], then there are a dyadic numbers ay /2™ and by /2" that satisfies
the following properties. First, ay/2™ is strictly between xj and x; minus half the
distance between zj and zj_;. Similarly, by /2" is stricly between z; and zj; plus
half the distance between x; and xp.,. This condition is made to ensure that

br—1 Qg by, Qg1
Mk —1 I A IMk+1

Moreover, the dyadic numbers also satisfy

Qg < €

R S UM (m - 1)
and

bk €

— -z

o P AM(m = 1)
It directly follows that

bk Qe €

—_— < _—
2 2m  2M(m — 1)

From this, define N to be the maximum of the n;’s and notice that we can rewrite
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Hence, combining this with the previous inequality gives us
€ - b a
Z k k
2 ~ P M <27k a 2Tk)

But notice that right hand side is an upper bound for the lower Riemann sum
with the partition Py U P where the subintervals are precisely the ones between
the dyadic approximations of the z;’s. Hence, since we can split L(f, Py U P, [a, b])
into two sums, one that iterates over the subintervals of Py that are not contained
between the dyadic approximations of some x; and another sum that iterates over
the subintervals of Py U P that are contained between the dyadic approximations
of some z;, then we get the following upper bound:

L(J, Py, [a,W)) + 5 > L(f. Px U P [a,1)
which implies

L(f, Py, [a,b]) + g > L(f, Px U P,[a,b])
> L(f, P, a,b])
> L(f,[a,b]) —

N |

giving us

L(f,PN,[CL,b]) > L(f? [a7b])_€

Thus, the sequence {L(f, Py, [a, b])}., gets arbitrarily close to L(f, [a,b]). But L(f, [a,b])
is an upper bound for this sequence. It follows that L(f, [a, b]) = sup,, L(f, Py, [a, b]).

Therefore,
L(f,la,b]) = lim L(f, P, [a,b])

n—oo

The proof for the upper Riemann integral is the same up to some small readjust-
ments.

Exercise 8
Suppose f : [a,b] — R is Riemann integrable. Prove that

[r=m s (e 2,

Solution

In this solution, for all n € Z*, T will denote by P, the partition of [a, b] that divides
the interval into n equaly spaced subintervals. Let’s use the definition of the limit
for sequences to prove the claim.

Let € > 0, then there exist partitions P and P® of [a, b] satisfying

L(fa P(l)v [avb]) > L(fa [Cl, b]) -

DO

U(f.1a,8) + 5 > U, PP, [a,b])
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If we consider the merging of the partitions P = PV U P?) = {a = X0, Ly ey Ty =
b}, then the previous inequalities still hold even if we replace PM and P® by P:

L(fv Pv [avb]) > L(fv [av b]) -

DO ™

€
U(f.[a.8) + 5 > U(f, P.Ja,b)
By the Archimedean Property in R, there is a N € Z™ such that

1 - 1 €
N b—a 4M(m—1)

Moreover, to make the rest of the proof simpler, make N large enough so that
(b—a)/N is stricly less than the maximum size of the subintervals in P. Let n > N,
let’s first prove that

b—a

L(f.PU Py, [a,8]) < L(f, P, [a,5]) + 2M(m — 1) —

To do so, since P, is a partition of [a, b], then any x; 18 going to be in a subinterval
of P, of the form [y;,,y;,] where y;, = a + j2=2% and y;, = y;, + =2

Vi <2 < i,

By our assumption on [V, there are no z; between y;, and z; or x; and y,,. Hence,
the lower Riemann sum corresponding to the partition PU P, contains the following
terms:

(zi —yi,) inf f+(yi, — ;) inf f

Yiy T L, y@]

for all 7 € [1,m — 2]]. But notice that we can find the following upper bound:

(i —yi) inf [+ (y, —2) inf f < (2 =y, )M+ (yi, — v)) M

[yil,mi] Ti, yZQ]
= M(yiQ - yil)
b—a
n

=M

Summing over all ¢’s gives us

m—1
{ — Yiy) [inf f+ (yi, — x;) inf f}<

YiqTi $1 yzg

=1

Thus, from the n + (m — 1) terms of the lower Riemann sum associated with the
partition P U P,, we can bound above 2(m — 1) of the terms by M(m — 1)>2.
What it means is that L(f, P U P,,[a,b]) can be bounded above by M (m — 1)>2
plus L(f, P, [a,b]) without the m — 1 subintervals containing the z;’s. But each
subinterval in L(f, P,, [a,b]) is of the form inf,, , ., =% so is greater than — M=%
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Thus, if we denote by my the infimum of f on the kth subinterval of P,, we get:

n—(m—1)

b—a] b—
LU PUPLIa ) < 37 ||+ M(m - )=
i=1 L .
n—(m—1) - - m—1
b— b— b—
D D L e S V) a}—l—2M(m—1) ¢
) n " n n
=1 - - ]:]_ -
n—(m—1) - - m—1 r
b— b— b—
< My, a4 + My } +2M(m —1) a
n - J n n
i=1 L 4 =1t
. b— b—
_ [mk @} +2M(m— 1)~
n
=1
b—a

= L(f, P,,a,b]) +2M(m — 1)

which is the desired inequality. Similarly, we can prove an analoguous inequality for
the upper Riemann sum:

b—a

n

U(f,PUP,,[a,b]) >U(f, Py, a,b]) —2M(m — 1)

From these inequalities, we get the following:

—a € - b—a b—a
~ > ) _
>+2_Z{mzn}+2M(m H—

i=1

=L(an,[abD+2M(m—1)b;a
> L(f,PUP,, [a,})

> L(f, P,[a,b])

> L(f.[a,b]) - 5

which implies

b . n .
/ b—a f<a+ib
a n i=1

Similarly, with upper Riemann sums, we get
b—a b— b
aZf(aJri a)—/f<e )
no = n “
Combining (1) and (2) gives us

b—a b— b
na;f(cH—z a)—/ﬂf

Therefore, by definition of the limit of a sequence, we have

J;%—Zf(a“ V-

<e€
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which proves our claim.

Exercise 9

Suppose f : [a,b] — R is Riemann integrable. Prove that if ¢,d € R and a < ¢ <
d <b, then f is Riemann integrable on [c, d].

[To say that f is Riemann integrable on [c, d] means that f with its domain restricted
to [c,d] is Riemann integrable.]

Solution

In this solution, we will denote by f|. 4 the restriction of f to [c,d]. Let’s prove this
using the criterion proven in exercise 3. Let € > 0, then by Riemann integrability of
f, there exists a partition P such that

U(f, P, [a,b]) — L(f, P, [a,b]) <€

Consider now the partition P’ = PU{¢, d}, then the previous still holds if we replace
P by P’ since P’ is a refinement of P:

U(f, P, [a,b]) — L(f, P',]a,b]) < €

If we write P as {a = zy, x1, ..., x, = b}, then there must exist integers ¢ < j € [0, n]
such that z; = c and z; = d. Define now the partition Py = {¢ = =, zi41, ..., v; = d}
and notice that

U(f|[C,d]7P07[C7d]> cd]>P0> c, d

-1

Q

sup f’cd inf f|cd>(xi+1_xi>

[gjL L+1 Ti, xl+1

&’F
H@

I
[ﬁ

[zi,zit1] [wiwit]

3
LT

[ﬁ

( sup f — inf f) (Tig1 — x;)

sup f— int £ (s — )
1 xl xz+1] mz Tit+1

(. P'.[a,b]) — L(f, P',[a,B])

Al
quly-

which proves that f is Riemann integrable on [, d].

Exercise 10

Suppose f : [a,b] — R is a bounded function and ¢ € (a,b). Prove that f is Riemann
integrable on [a, 0] if and only if f is Riemann integrable on [a,c| and f is Riemann
integrable on [c, b]. Furthermore, prove that if these conditions hold, then

u[f=l7+[ﬁi
Solution

Before proving this, let’s show that

U(f,la,0]) = U(f,la,c]) + U(f, [¢,d])
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and

L(f,la,b]) = L(f,[a, c]) + L(f [c,d])
hold. To do so, we will use properties of the supremum and infimum. Let ¢ > 0,
then there exists a partition P of [a b] such that U(f, P, [a,b]) < U(f,a,b]) + €
But if we consider P U {c¢} = {a = zo,...,7; = ¢,...,x, = b, } instead of P, we can
split it into two partitions P, = {xo, . xj} and P = {zj,....,z,,} of [a,c| and [c, ]]
respectively. Hence:

U(f,[a,b]) +€>U(f,P,|a,b])
> U(f P U{c},[a,b])

—Z —x;_q) inf f

1'2 1 -Tz]
J n
—Z — i) inf f+ Z( — ;1) inf f
[ —1,24] P [ —1,24]

= U(f, Pla [CL,C]) + U(f, P2a [67 b])
> U(f,la. ) + U(f, [c,b])
In short:
U(f,la,c) +U(f,[e,0]) < U(f, [a,b]) + €

But nothing here depends on € so if just take e — 0, we get

U(f,la, ) + U(f,[e, b]) < U(/, la, b])

Similarly, for any € > 0, there exist partitions P, and P, of [a, c| and [c, b] respectively
such that U(f, P1,[a, c]) < U(f, [a,c])+5 and U(f,PQ,[c b]) U(f,lc,b])+5. Hence,
if we consider the partition P = P, U P, = {x, ..., x o Zn} of [a,b], we get

U(f? [a,c]) + U(f7 [C, b]) +e> U(f7 P17 [CL,C]) + U(f7 P27 [07 b])

n

:Z(gyi—xi,l)[ inf f+ Z( — ;) inf f

<.

py Ti—1,%4) P [xi—1,2i]
:Z@—xi ) inf
= (, ,a, b))
> U(f[a,0])

In short:
U(f,la,0]) <U(f,la,c]) + U(f,[c,b]) +€

But nothing here depends on € so if just take e — 0, we get
U(fla,b]) < U(f,[a,c]) + U(f, ¢, b])

It follows that

U(f,la,b]) = U(f, la,c]) + U(f, [¢,b])
The proof for the lower Riemann integral is the same up to some small modifications.
Now that we proved these results, the rest will follow easily.
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For the equivalence that we need to prove, notice that the forward implication
follows from the previous exercise. For the reverse implication, suppose that f is
both Riemann integrable on [a, ¢] and [c, b], then by definition, we have

U(f,la,d) = L(f,la, c])
and

U(fv [07 b]) = L(fv [C’ b])
Adding the two equations gives us

U(f,la,c]) + U(f, [e, b]) = L(f, la, c]) + L(F, [¢, 0])

which is equivalent to
U(/f,la,b]) = L(f,[a,b])
Thus, f is Riemann integrable on [a, b].

Now, suppose that f is Riemann integrable on [a,b] and consequently, on [a, ] and
[c, b] as well, then:

b c b
/ f = U(f.[a,b]) = U(S. [a, d) + U(f. [e,B) = / ft / f
which proves our claim.

Exercise 11
Suppose f : [a,b] — R is Riemann integrable. Define F': [a,b] — R by

0 ft=a
F(t):{fjf if ¢ € (a,b]

Prove that F is continuous on [a, b].

Solution

First, let m be the infimum of f on [a,b] and M be the supremum of f on [a,b].
Define A to be the maximum between |m| and |M|. Now, let = € [a,b] and (z,,), a
sequence in [a, b] that converges to x. For all n € Z*, if x < x,, we have

(xn — ) 1nff</ f<(x,—x)sup f

[z,2n] [,xn]

But by properties of the infimum and supremum, we have

m(z, —z) < (x, —x 1nff</ f<(x,—x)sup f < M(z, — )

[a,b] [a,b]
By definition of A, we have

—A(x, —x) <m(z, — ) S/znfSM(xn—x) < Az, — )

By the previous exercise and by definition of F, we have

Fa)-F@) = [ 1= 5= ["1
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Thus, plugging this in our inequality gives us

—A(x, —x) < F(z,) — F(z) < Az, — 2)

which is equivalent to
|F(zn) = F(x)] < A2, — )

We assumed here that © < z,, but we actually get the exact same result if x = z,, or
if > x,. Thus, since our last inequality holds for all n € Z*, then by the Squeeze
Theorem:

lim F(x,) = F(x)

n—oo
Since it holds for any sequence (z,), converging to z, then by the Sequential Char-
acterization of Continuity, we get that F'is continuous at x. Since it holds for all
x € [a,b], then F' is continuous on [a, ).

Exercise 12
Suppose f : [a,b] — R is Riemann integrable. Prove that |f| is Riemann integrable

and that
b b
[ [
a a
Solution
First, let’s prove that |f| is Riemann integrable. To do so, let’s use the criterion

proven in exercise 3. Let € > 0, then there exists a partition P = {x, ..., x,} of [a, ]
such that

U(f7Pa [a?b]) —L(f,P7 [a>b]) <€
Let k € [1,n], define

my = inf f My = sup f
[zr—1,2k] [Tp—1,2%]

my = inf |f] M; = sup |f]
[Tg—1,7k] [k—1,2k]

Let’s show that M, —mj < My — my,.
If M, <0 or my >0, it is trivial. Suppose that Mg > 0 and m; < 0, then for all
T € [xp_1, 2]

and

f(@) <My = f(z) +myp < My
— f(x)ng—mk

Putting the last two inequalities together gives us

—(My —my) < fz) < My, —my,
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which is equivalent to

|f(z)| < My, —my,
But it holds for all = € [x_1,x;], so we get

which is the desired inequality.
Now, simply notice that

U(If1, P, [a,b]) = L f1, P.fa b)) = D (M — mp) (= x4-1)

< Z(Mk — my)(Tk — Tp-1)
= U(f,P,[a,b]) — L(f, P, [a, b))
<€

which proves that |f| is Riemann integrable as well.

To prove the triangle inequality, 1T find it easier to first prove that the Riemann
integral is monotone. To do so, let g1,¢92 : [a,0] — R be two Riemann integrable
functions such that g; < g9, then if we define h = g, — g1 > 0, by exercises 4 and 5,
we know that h is Riemann integrable as well and that

b b b
/h:/92—/91

Moreover, since h is positive on [a,b], then infj,; A must be positive as well. It

follows that
<o 1= o [

which directly implies
b b
/ g1 < / 92

Hence, the Riemann integral is monotone. Therefore:

=[fl < f<Ifl

implies by monotonicity and by exercise 5 that

—/ab|f|§/abf§/ab!f|
g/ab\f!

This proves the triangle inequality for the Riemann integral.

which is equivalent to

Exercise 13
Suppose f : [a,b] — R is an increasing function, meaning that ¢,d € [a,b] with
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¢ < d implies f(c) < f(d). Prove that f is Riemann integrable on [a, b].

Solution
Let’s prove that f is Riemann integrable using the criterion proven in exercise 3.
Let € > 0, then by the Archimedean property in R, there exists a n € Z" such that

(b—a)(f(b) — f(a))

n

<€

Now, consider P = {xg,...,z,} to be the the partition of [a,b] that divides the
interval into n subintervals of equal size. For all k € [1,n], if we define

mp = inf f My = sup f

[Tp_1,Tk] [Tr_1,2k]

then we get

mk:f<a—l-(k—1)b;a> Mk:f<a+kb_a)

since f is increasing. Hence:
U(fv P> [CL, bD_L(fa Pv [av b])
= Z(Mk —my) (T — Tp-1)

Z;“i [f (a+kb;a> —f(a+(k—1)b;“>}
=220 40) - f(a))
< €

Therefore, f is Riemann integrable.

Exercise 14
Suppose f1, fa, ... is a sequence of Riemann integrable functions on [a, b] such that
f1, f2, ... converges uniformly on [a,b] to a function f : [a,b] — R. Prove that f is

Riemann integrable and
/ f = lim fn
n—oo
Solution

First, let’s show that f is Riemann integrable using the criterion proven in exercise
3. Let € > 0, then by uniform convergence, there is a N € Z" such that

|[f(2) = fn ()] <

€

4(b—a)

for all z € [a,b]. Since fy is Riemann integrable, then there is a partition P =
{zg, ...,z } such that

U(fN,P, [avb]) - L(vapa [CL, b]) <

NN e
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Let k € [1,n] and define

my = inf f My = sup f
[—1,28] [Tr—1,2k]
md = inf fy MY = sup fu
[Zp—1,2k] [k—1,2k]

Let x € [xk_1,x)], then
1) = v )] < = = F@) = @) < 5
= f(z) < 4(b€—a) + fn(z)

€

4(b —a)

= f(z) < + MY

However, since the last inequality holds for all € [x;_1, zx] and only the left hand
side depends on z, then it follows that

€

4(b—a)

M, < + MY (1)

Similarly,

1) = N < =gy = @) =0 < s

— @) < =g @

= i < gy H W

= = = S/

However, since the last inequality holds for all € [z4_1, 2%] and only the right hand
side depends on z, then it follows that

which implies
€

4(b—a) 2)

—my < —my, +
Adding (1) and (2) together gives us

Mk—mkSMé\[—mZ’—i-

2(b—a)
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for all k € [[1,n]. Thus:
U(f, P, la, b)) =L(f, P, [a, b])
= i(Mk — my) (2 — Tp-1)
k=1

<3 -+ g )

- ;(M,ﬁv —my ) (e — Tp-1) + ﬁ Z(ﬂfk — Tj-1)

= Ulfw Pl b)) = LS P [os8]) + 55 (= )
<5+3

= €

which proves that f is Riemann integrable.
Now, let’s prove that fab fn — f; f as n — oo using the limit definition. Let € > 0,
by uniform convergence, there is a N € Z" such that for all n > N and z € [a, b]

€

2(b—a)

[f(z) = fu(z)| <

Thus, for any n > N, using the triangle inequality (exercise 12),

/f 1)
g/a\f—fnl

fn

Therefore, by definition,
/ f= lim fn
n—oo

which proves our claim.
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1B Riemann Integral Is Not Good Enough

Exercise 1
Define f : [0,1] — R as follows:

e

if a is irrational,

fla) = if a is rational and n is the smallest positive integer

S|

such that a = for some integerm.

Show that f is Riemann integrable and compute fol f.

Solution

First, notice that f can be written as the limit of a sequence fy, f1, ... of functions
defined recursively by fo = 0 and f,,.1 = f, except for the z’s which can be written
as ;=5 as an irreducible fraction. In that case, define f,,1(z) to be n%l It is to see
that the sequence of functions converges uniformly to f.

But notice that for all n € Z™, the function f, only differs from the function zero
at finitely many points. Thus, by exercise 6 of section 1A, f, is Riemann integrable
and its integral is equal to zero. Hence, by exercise 14 of section 1A, f is Riemann

integrable as well and

Exercise 2
Suppose that f : [a,b] — R is a bounded function. Prove that f is Riemann
integrable if and only if

L(_f7 [0“7 b]) = _L(fv [CL, b])
Solution We actually proved a very similar result in the solution of exercise 5.
Let’s prove it again here for completeness. Our goal here will be to show that

L(=f,la,0]) = =U(f, |a, b])

To do so, consider first an arbitrary partition P = {xy, ..., x, } of [a, b]. By properties
of the infimum, we have

n

L(f, P,[a,b]) = ) (wx — x-1) inf (—f)

= [Th—1,2%]
=— Z(azk — 1) sup f
k=1 [Th—1,2]
= _U<f7 P7 [a’7 b])

Hence, by properties of the supremum, we get
L(=f[a.b]) = sup L(~f, P [a, b])
= Sgp(—U(f, P, [a,0]))
= —inf U(f, P,[a,t])
= —U(f,[a,b])
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Therefore, the equivalence can be proved easily as follows:

f is Riemann integrable <= U(f, [a,b]) = L(f, |a, b))
— —U(/f,la,b]) = =L(f, [a,0])
— L( fa [a b]) _L<f7 [CL b])

which is the desired equivalence.

Exercise 3
Suppose f, g : [a,b] — R are bounded functions. Prove that

L(f,la,b]) + L(g, [a,b]) < L(f + g, [a,0])
and
U(f +9,la,b) <U(f,[a,b]) + Ulg, [a, b]).
Solution
Let’s prove it for the lower Riemann integral. To do so, let P, and P, be two arbitrary

partitions of [a,b] and consider the common refinement P = P, U P, = {zg, ...,z },
then by properties of the infimum:

L(f, P1,[a,b]) + L(g, P2, [a,b]) < L(f P, la,0]) + L(g, P, |a, b])

—Z —x;_1) inf f—l—z i —xi—1) inf g

JJL 1, xL $1 1 xz]
= Z — T [ inf f+ inf g}
[i—1,4] [i—1,24]

<z ) inf (f+g)

xz 1 ﬁEi}

_L(f+g7 [CL, b])
< L(f+ g [a,0])

If we fix P, and rewrite the inequality as
L(f, P1,[a,b]) < L(f + g,[a,b]) = L(g, P2, [a,b])
Then taking the supremum over the P;’s gives us
L(f[a,b]) < L(f + g, [a, b)) — L(g, P2, [a,b])
Rewriting the inequality as
L(g, P, la,b]) < L(f + g, [a,0]) — L(f, [a, b])
and taking the supremum over the P,’s gives us

L(g, [a,b]) < L(f + g, la, b)) — L(, [a, b])

which can be rewritten as

L(f,[a,b]) + L(g, [a,b]) < L(f + g, [a, b])
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The proof for the upper Riemann integral is the same.

Exercise 4
Give an example of bounded functions f, ¢ : [0,1] — R such that

L(f,10,1]) + L(g,[0,1]) < L(f + ¢,[0,1])

and

U(f+9,[0,1]) <U(f,[0,1) + U(g, [0,1]).
Solution
Let f and g be defined by

f<x):{2 z€QN[0,1] g(x):{1 z€QN[0,1]

1 otherwise 2 otherwise

on [0,1]. Then, L(f,[0,1]) = L(g,[0,1]) =1 but L(f + ¢,[0,1]) = 3 # 2.
Similarly, U(f,[0,1]) = U(g,[0,1]) =2 but U(f + g,[0,1]) = 3 # 4.

Exercise 5

Give an example of a sequence of continuous real-valued functions fi, fa, ...

and a continuous real-valued function f on [0, 1] such that
f(x) = lim fi(x)
k—o0
for each = € [0, 1] but

/f?éhm Ir

Solution
Consider the functions fi, fs, ... defined by

nx z € [0, 1]
fulx)=<¢2—nx =z¢€ (% %]
0 ze (2,1]

24

on [0, 1]

Then, for all k € Z™: fol fr = 1. However, the f;’s converge pointwise to the

constant zero function on [0, 1] so fol f = 0. Tt follows that fol f and limy_o fol fr

are two different quantities.



Chapter 2

Measures

2A  Outer Measure on R

Exercise 1
Prove that if A and B are subsets of R and |B| =0, then |[AU B| = |A|.

Solution
By finite subadditivity, we have
|AUB| < |A[+|B| = |A] (1)
Since A C AU B, then by monotonicity we have
|A| < |AU B| (2)
Combining (1) and (2) gives us
|AU B| = |A]

Exercise 2
Suppose A C R and t € R. Let tA = {ta : a € A}. Prove that [tA| = |t||A].
[Assume that 0 - 0o is defined to be 0.

Solution
First, notice that the statement is trivial for t = 0 so suppose t is nonzero. Secondly,
if we let [ = (a,b) be an arbitrary open set with a < b € R, then for ¢ > 0:
0(tD) = {((ta,tb))
=tb—ta
=t(b—a)
= [tle(d)
and for t < 0:
0(tI) = £((th,ta))
=ta —1b
= —t(b—a)
= [tle(I)

25
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Thus, it works for all ¢ # 0.
Now, let {3, I5, ...} be an arbitrary collection of open intervals covering A. Tt is easy
to see that {t[,tl,,...} covers tA. Hence,

LA <Y en) = 1) o)
n=1 n=1
which is equivalent to
’]tA] < ZE

But notice that {I,,}, was an arbitrary cover of A so taking the infimum on both
sides over all covers {I,},, of A gives us

tA] < [t]|A] (1)

Proving the reverse inequality can actually be done using equation (1):
4l = )] < |7 | e

which is equivalent to

t][A] < [tA] (2)
Combining (1) and (2) gives us

[tA] = [¢]]A]
which is the desired formula.

Exercise 3
Prove that if A, B C R and |A| < oo, then |B\ A| > |B| — |A|.

Solution
By subadditivity and monotonicity, since B C (B \ A) U A, then

|Bl < [(BANA)UA[ < [B\ Al + |A]

Since |A| < oo, then
(B\A)UA| > |B] -4

which is the desired inequality.

Exercise 4
Suppose F'is a subset of R with the property that every open cover of F' has a finite
subcover. Prove that F'is closed and bounded.

Solution

Let’s prove first that F' is bounded. To do so, notice that {(k, k+2) }recz is certainly
an open cover for F' since Ugez(k,k + 2) = R. Hence, by our assumption on F,
there exist finitely many open intervals that covers F, i.e., F' is a subset of a finite
union of open intervals of the form (k, k 4 2) where k € Z. Obviously, each of these
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intervals is bounded, hence a finite union of such intervals is bounded a well. Thus,
F'is a subset of a bounded set, so it must be bounded as well.

To show that F'is closed, let’s prove that F°is open. To prove it, let x be an arbitrary
element in F° and let’s show the existence of an € > 0 such that (r — e,z +¢) C F.
Consider the collection {(—oo0,z — 1) U (z 4+ 1,00)},ez+. and notice that its union
is R\ {z}. Since x ¢ F, then FF C R\ {z} which shows that the collection is
actually an open cover for F. Again, by our assumption on F, there exist finitely

many natural numbers ny,no, ..., ny such that

FCU( oox——z>u<x+nli,oo)

If we take M = max;<;<n(n;), then
1 1
FC (—oo,x— M) U (:E—I—M,oo)

| |
_ | c Fe
{x M’x+M} <

It follows that

If we let € = M+1’ then we get

(x—e,x+e€) CF°
which proves that [ is open, and therefore that F' is closed and bounded.

Exercise 5

Suppose A is a set of closed subsets of R such that NpcsF' = @. Prove that if A
contains at least one bounded set, then there exist n € Z* and Fy, ..., F,, € A such
that FiN..NE, =43d.

Solution

In this proof, I will use the following theorem proved in Exercise 3.3.6.(c) of Under-
standing Analysis : If {A,}, is a countable collection of closed and bounded subsets
of R such that any finite intersection is non empty, then N°°, A, is non empty as
well. As a corollary, if a countable intersection of closed and bounded sets is empty,
then there must be a finite subcollection such that the intersection is empty as well.
Notice that the theorem that I just stated is simply a generalisation of the Nested
Interval Property.

Since we have no informations about the cardinality of A, the first step of this proof
will be to construct a countable collection of closed and bounded sets that will let
us apply the previous theorem in a useful way. To do so, recall that any open set
in R can be written as a countable union of open intervals. Moreover, any open
interval can be written as a countable union of open intervals with rational end-
points. Hence, any open set can be written as a countable union of open intervals
with rational coefficients.

Consider now the set B = {(a,b)® : a,b € Q} which is countable (a,b — (a,b)®

a bijection from Q? to B and we know that Q? is countable) and let F' be a closed
set. By what we said previously, we have that

e
=1



CHAPTER 2. MEASURES 28

for some {B;}; C B. It follows that

i=1

Since F' was an arbitrary closed set, then any closed set can be written as a countable
intersection of elements in B. It follows that for every element F' in A, there is a
coutable collection {I,gF)}k such that F' = ﬂzozl[,gF).

From this, define the collection I = Upea{I ,(CF)};C which must be countable since it is
a subset of B which is countable. Since it is countable, to make the notation easier,
enumerate the elements in [ as {I3, I5,...}. Let’s prove that N0, 1, C Npca L™

e Suppose that z € N>, [, and let Fy € A, then Fy = ﬂz":lI,EFO). Since r €
M2, I, then x € I for all k € Z*. Tt follows that

o0
re (L™ =F
k=1

Since Iy was an arbitrary element of A, then x € NpcyF. Since z was an
arbitrary element of N7, I,,, then

ﬁ]nc N F
n=1

FeA

Now if we suppose that NpeF' = 9, we get:

n=1 n=1

But notice that on the left hand side, we have a countable intersection of closed and
bounded sets. By the theorem stated at the very beginning, we must have a finite
subcollection {Fy N Iy, ..., Fo N I,, } such that

m

Fyn ﬁ]ni =(Fnl,) =2
=1

i=1

Now, for each i € [1,m], since I,, € I and by definition of I, there must be a set
F; € A such that I, € {I,gFi)}k which implies that

F=N1" c1,
k=1

Therefore:

FANFRN..NF, CFRN( ), =2
=1

which proves our claim.
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Exercise 6
Prove that if a,b € R and a < b, then

(@, 0)] = l[a,0)| = [(a, ]| = b —a.

Solution
Since the sets {a}, {b} and {a,b} are all of outer measure zero, then by exercise 1:

e [(a,b)] = |(a,0) U{a,b}| = [[a,b]| =b—a
¢ |la,0)] = [[a, ) U{b}| = [[a,b]| = b —a
o |(a,0]] = [(a,b] U{a}| = [[a,b]| = b—a

which proves our claim.

Exercise 7
Suppose a, b, ¢, d are real numbers with a < b and ¢ < d. Prove that

|(a,b) U (c,d)| = (b—a)+ (d — ¢) if and only if (a,b) N (¢,d) = 2.

Solution
First, suppose that (a,b) N (¢,d) = &, then we either have b < ¢ or d < a. Assume
sithout loss of generality that b < c. By subadditivity, we have

[(a,b) U (¢, d)| < [(a,b)| + (¢, d)| = (b —a) + (d — )

By exercise 3, we also have

|
> |(a,d)| = [[b, c]]
=(d—a)—(c—=b
=0b—-—a)+(d-c

which shows that
[(a,b) U (c,d)| = (b—a) + (d —c)

Suppose now that(a,b) N (¢,d) # &, then we either have (a,b) U (¢,d) = (a,d) or
(a,b) U (¢, d) = (¢,b). Assume without loss of generality that (a,b) U (¢,d) = (a,d),
then since we must have ¢ < b, we get

‘(a7b) U (C7d>| = |(a7d>|

=d—a
<d—a+b—c
=(b—a)+(d—c)

Therefore,
[(a,0) U (c,d)| # (b—a) + (d —c)
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which proves the equivalence between the two statements.

Exercise 8
Prove that if A C R and ¢t > 0, then |A] = |[AN (—=t,t)|+ |[AN(R\ (¢, 1))|.

Solution
First, by subadditivity, we have

(Al = [AN[(=t, 1) U (R (=t,1))]|
=[[AN (=, )] U[AN (R (=t,1))]|
<[ANn(=t, )]+ AN (R (=t,1))|
which gives us
Al < AN (=t,8)[ +[AN (R (=t,1))] (1)

Let’s now prove the reverse inequality. Let € > 0, then by properties of the in-
fimimum, there exists a collection {Ij}; of open intervals that covers A and such
that

S ) < |Al+ %

k=1
Consider now the subcollection {I; j }r of {I;}i only composed of the intervals that
are fully contained in (—t¢,¢). Similarly, define the subcollection {5}« of {I;} only
composed of the intervals that are fully contained in (—t,¢)°. Obviously, these two
subcollection are disjoint but may not partition {Ij}; since there may be intervals
that are neither fully contained in (—t,¢) nor in (—¢,¢)°. Concerning these sets,
let’s define the collections {/5 4}, {L1x}r and {I5}x that will contain the following
intervals. Let I, = (ag,bx) € {I}x-

e If both t and —t are contained in I, then by the previous definitions, we have
]k c {ILk}k: or ]k c {Ig7k}k.

e If I contains t but not —t, define

€
IS,k = (ak,t + W)

€
Iy, = (t ~ ok bk)

e If I, contains —t but not ¢, define

€
]3,k = ((lk, —t + 2k+2)

€
Iy = <—t — Wybk)

e If both ¢ and —t are contained in I, define

I3,k — (—t, t)
€
Ly = <Gk> —t+ 2k+2>

€
Is ), = (t ~ ok bk)
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Consider now the collections Ay = {11 & }xU{I3 }x and By = {Is; }eU{ Lo } e U{ L5k } -
By construction, Ay is a collection of open intervals that covers AN (—t,t) and By
is a collection of open intervals that covers AN (R \ (—t,t)). Moreover, even if the
collections Ag U By and {Ij }x, the construction was done so that the total length of
all the open intervals in AqU By differs from the total length of all the open intervals
in {I}, by at most >, | 2555 = 5. This gives us

Sun+ Y < ie(m +5

IeAp IeBy

which implies

AN (=t + AN RN (=t,)) < Y (D) + Y A(I)

I€Ag IeBy

> €
<D )+
k=1
€

€
< |A|l+ =
[Al+ 5+ 5

=|A| + ¢
Taking € — 0 gives us
AN (=t )]+ [AN (RN (=t,1))] < 4] (2)
Combining (1) and (2) gives us
Al =[AN (=, )]+ [AN (R (=1, 1))]

which is the desired equation.

Exercise 9
Prove that |A| = tlim |AN (—t,t)| for all A C R.
—00

Solution
For this proof, let’s first prove by induction that

AN (—n,n)| = Z|Aﬂ (=i, —i+ 1] Ui — 1,7))|

foralln e Z™.

e (Base Case) For n =1, it can be derived as follows
1
i=1
e (Inductive Step) Suppose that there is a k € Z™ such that

AN (—k, k)| = Z|Am ((—i,—i4+ 1 Ui —1,7))]
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holds. Let’s prove it for £+ 1. Notice that it suffices to apply the result of the
previous exercise to the set AN (—k —1,k+ 1) with ¢t = k:

IAN(=k—1Lk+1)|=|(AN(-k—=1,k+1))N R\ (=k, k)|

+ |JANn(=k—-1k+1)N(=k, k)|

=|ANn((—k—1,—k] Uk, k:+1))|+|Am( k, k)|
=|AN((—k—1,—k|U[k,k+1))|

n Z\Am((—i,—iJrl]U[i—laim

k+1

- Z\Aﬂ (=i, =i+ 1 U [i — 1,4))]

which proves it k£ + 1.

Now that we proved the formula, let’s prove our claim. By subadditivity,

|A| = UAH((—Z',—'H—l]U[i—l,i))
<Z|Aﬂ —i, =i+ 1] U[i — 1,17))]

- Jii&z AN (=i, =i+ 1] Ui — 1,1))]

= lim [AN(—n,n)|

n—oo

Moreover, by monotonicity, for all n € Z™, we have
AN (—n,n)| < [A]

It follows that
lim |AN (—n,n)| < |A4]
n—oo

Thus,
|A| = lim |AN (—n,n)|

n—o0
But we still need to prove it when the limit is taken over all positive real numbers ¢
and not just for positive integers. However, the desired result follows from the fact
that ¢ — |A N (—t,t)| is increasing which shows that

lim |AN (=t,t)] =sup|AN(—t,t)| = sup |[AN(—n,n)| = lim [AN (—n,n)|
t—o0 t>0 n—r00

neZ+t

Therefore,
|A| = lim |A N (—t,t)]
t—o0

Exercise 10
Prove that [[0,1] \ Q| = 1.
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Solution
Since QN [0, 1] is countable, and hence has measure zero, then by exercise 1 of this
section:

0,1\ Q[ = ([0, 1]\ Qu(QNI0, 1])[ = [[0, 1] = 1

Exercise 11
Prove that if Iy, I, ... is a disjoint sequence of open intervals, then

U | => ).

Solution
Let’s first prove it for finitely many disjoint open intervals Iy, ..., I,, where n € Z™.

By subadditivity, we have
U I < Z (1)
k=1 k=1

Moreover, by if write I, = (ay, by) and suppose that they are ordered as follows

o <b<ag<b<..<a,<b,
Then, by exercise 3, we have

‘[n U <0J17 bnflﬂ = ‘(CLl, bn) \ [bnfla an”
> [(a1,bn)| = |[bn-1, as]]
- bn —a; —ap + bn—l

= ((I,) + |(a1,bn_1)]

by induction, it follows that

U I = Zg([k)
k=1 k=1

Thus, equality holds in the finite case. Consider now the infinite case with the
sequence [q, I, ..., then again, by subadditivity:

U Ii| < Zﬁ([k)
k=1 k=1

However, notice that for all n € Z*, using the finite case, we have

U
k=1

oo
>

p
1

= > (i)
k= k=1

Hence, taking n — oo gives us

U
k=1

> (1)
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which finishes the proof.

Exercise 12
Suppose 11,79, ... is a sequence that contains every rational number. Let

> 1 1
F=R\(J (rk—?,rk+ﬁ)
k=1

(a) Show that F is a closed subset of R.

(b) Prove that if I is an interval contained in F', then I contains at most one
element.

(c) Prove that |F| = oo

Solution

(a) If we rewrite
~ 1 1\°
F:Rﬂﬂ (Tk_?’rk—i_z_k)
k=1

then we get that F is simply an intersection of closed sets. Hence, F' is closed
as well.

(b) By definition, F' contains no rationals. Let I be an interval contained in F.
Suppose that [ has two distinct elements a and b such that a < b, then,
[a,b] C F. However, by the density of Q in R, there must be a rational r( in
[a, b] which would imply that 7o € F. A contradiction. Thus, I contains at
most one element.

(c¢) The proof is straightforward:

> |R| -
k=1
> 1 1
SRS <k 2_k+2—)‘
k=1

Therefore, |F| = oo.
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Exercise 13
Suppose € > 0. Prove that there exists a subset F' of [0, 1] such that F' is closed,
every element in F' is an irrational number, and |F| > 1 —e.

Solution
Since Q N [0,1] is countable, then it has measure zero. By the properties of the
infimum, there is a cover {I;}; of open intervals of Q N [0, 1] that satisfies

D UL) <e
k=1
Consider now the set F' defined by
F=0,1\J %
k=1
Then, F' C [0,1]. To show that F' is closed, notice that we can write
F=0,1n()I
k=1

which is an intersection of closed sets, hence, closed. To show that [ contains
only rational numbers, notice that U2 I covers Q N [0, 1], hence, contains all the
rationals in [0, 1]. It follows that [0, 1] \ U2, contains no rationals. Finally:

|F| =

0,1\ U I
k=1
Ju
k=1
>1-) |L
k=1

=1-> UL)

>1—c¢

> [[0,1]] =

which proves that F' has all the required properties.

Exercise 14
Consider the following figure, which is drawn accurately to scale.

]

(a) Show that the right triangle whose vertices are (0,0), (20, 0) and (20, 9) has
area 90.
[We have not defined area yet but just use the elementary formulas for the
areas of triangles and rectangles that you learned long ago.|
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(b) Show that the yellow (lower) right triangle has area 27.5.

)

(c) Show that the red rectangle has area 45.

(d) Show that the blue (upper) right triangle has area 18.
)

(e) Add the results of parts (b), (c), and (d), showing that the area of the colored
region is 90.5.

(f) Seeing the figure above, most people expect parts (a) and (e) to have the same
result. Yet in part (a) we found area 90, and in part (e) we found area 90.5.
Explain why these results differ. [You may be tempted to think that what we
have here is a two-dimensional example similar to the result about the nonad-
ditiwity of outer measure (2.18). However, genuine examples of nonadditivity
require much more complicated sets than in this example.

Solution

(a
(b

Area = @ =90
Areayeiiow = % =27.5

(c) Areayq = (20—11)-5=145
(d (20-1)(9-5) _ g

Areablue = 5

e) Areayelow + Areayeq + Areapye = 27.54+ 45+ 18 = 90.5

)
)
)
)
(e)
(f) The big triangle composed of the three coloured shapes is actually not a tri-
angle at all. To verify this, if there was a triangle with vertices (0,0), (20, 0)
and (20, 9), then a quick calculation shows that it passes through the point

(11, 4.95) and not (11, 5).
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2B Measurable Spaces and Functions

Exercise 1
Show that S = {Upex(n,n+ 1] : K C Z*"} is a o-algebra on R.

Solution
As most of the proofs showing that a collection is a o-algebra, let’s split this one
into three parts:

e (& € S) Since ¥ C Z, then Upey(n,n + 1] € S. However, notice that
Uneg(n,n + 1] = @. It follows that @ € S.

o (closed under complements) Let A € S, then there exists a Ky C Z such
that A = Uner,(n,n + 1] Consider K; = Z \ K, and its associated element
B =Uper,(n,n+1]in S. Since ANB =@ and AUB =R, then B=R\ A.
Hence, A¢ € § which proves that S is closed under complements.

e (closed under countable union) Let {A;}; be a countable collection of elements
in S, then for all i € ZT, there is a subset K; of Z such that A; = U,ek, (n,n+
1]. Consider K = U, K; C Z and A = U,ci(n,n + 1] € S. By consruction,
A=U2 A; € S. Therefore, S is closed under countable union.

Therefore, S is a o-algebra on R.

Exercise 2
Verify both bullet points in Example 2.28.

Solution

e Suppose X is a set and A is the set of subsets of X that consist of exactly one
element:

A={{z}:2€ A}

Define S to be the smallest o-algebra on X generated by A. Let’s prove
that S is precisely the collection of subsets of X that are countable or co-
countable. To make it easier, denote by M the collection of subsets of X that
are countable or co-countable.

Hence, we need to prove that S = M. We already know from example 2.24
that M is a o-algebra on X. Moreover, it is easy to see that A C M. It
follows that S C M.

To prove the reverse inclusion, let £ € M, then one of E or E° is countable.
If E is countable, then we can simply write E as the countable union of the
singletons of its elements, hence, a countable union of elements in A C S.
This would imply that F € §. Similarly, if £¢ is countable, then with the
same argument, ¢ € S which also implies that £ € S. Thus, M C S. It
follows that S = M.

e Let A= {(0,1),(0,00)} and denote by S the smallest o-algebra containing .A.
Define the collection

E={2, (0,1), (0,00), (—00,0] U[L,00), (—00,0], [1,00), (—o00,1), R}

Let’s show that S = E. First, let’s prove that F is a o-algebra:
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— (@ € E) By definition of E.
— (closed under complement)
*x R\@=ReF

x* R\ (0,1) = (—00,0]U[l,0) € E
x R\ (0,00) = (—00,0] € E

R\ (=00, 0] U [1,00)) = (0,1) €
« R\ [1, ) (—o0,1) € E

* R\ (—00,0] = (0,00) € F

* R\ (—00,1)=[l,00) € F

*R\R—@GE

— (closed under countable union) Since E is finite, then it suffices to check
that F is closed under the regular union between two sets. To be faster,
I skipped the trivial unions that involve R or &

x (0,1)U(0,00) =(0,00) € E

x (0,1)U((—o0,0)U[l,00)) =R € FE

x (0,1)U[l,00) = (0,0) € E

% (0,1) U (—00,0] = (—o00,1) € E

% (0,1)U(—00,1) = (—00,1) € E

% (0,00) U ((—00,0]U[l,00)) =R e E

% (0,00)U[l,00) = (0,00) € F

% (0,00)U(—00,0l=ReF

% (0,00)U(—00,1) =R €eFE

% ((—00,0]U[l,00)) U[l,00) = ((—00,0]U[l,00)) € E
% ((—00,0]U[1,00)) U (—00,0] = ((—00,0]U[l,00)) € E
% ((—00,0]U[l,00))U(—00,1)=R€FE

% [1,00) U (—00,0] = ((—o00,0]U[l,00)) € E

x [1,00)U(—00,1) =R €F

% (—00,0] U (—00,1) = (—00,1) € E

Therefore, E' is a o-algebra on R that contains A. It follows that S C F. For
the reverse inclusion, let’s prove that any element in £ can be constructed
from elements in A using the operations of g-algebras, i.e., complements and
unions:

— @ isin S because S is a o-algebra.
— (0,1) is in S because it is in \A.
— (0,00) is in S because it is in A.

— (—00,0]U[1,00) is in S because it is the complement of (0,1) which is in

S.

— [1,00) is in S because it can be written as (0,00) \ (0,1) and we already
know that (0,00) and (0,1) are in S.

— (—00,0] is in S because it can be written as ((—oo,0] U [1,00)) \ [1,00)
and we already know that both sets are in S.
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— (—o00,1) is in S because it is the complement of [1,00) which is in S.

— R is in S because S is a g-algebra.

Therefore, S = E.

Exercise 3
Suppose S is the smallest o-algebra on R containing {(r, s] : r,s € Q}. Prove that
S is the collection of Borel subsets of R.

Solution

To make things easier, let’s denote by B the collection of Borel subsets of R. We
need to prove that & = B. First, notice that for all rationals r,s € Q with r < s,
the set (r,s] € B since it can be written as (r,00) \ (s,00) and both are open (so
Borel) sets. It follows that S C B.

For the reverse inclusion, let’s show that S contains every open sets. Let’s prove
first that S contains open interval Let (a,b) be an open interval with a < b € R.
By density of Q in R, there exist two sequence {g,}, and {s,} of rationals that
satisfy the following properties : {g,}, is decreasing and converges to a, {s,}, is
increasing and converges to b. Since all of the terms are rationals, then (r,,s,] € S
for all n € Z*. But S is a o-algebra so

(a,0) = | J(rn sn) €S

Hence, S contains every open interval. Now, using the fact that any open set can
be written as a countable union of open intervals, it easily follows that S actually
contains every open set. Therefore, B C S since B is generated by the open sets so

S=B.

Exercise 4
Suppose S is the smallest o-algebra on R containing {(r,n] : r € Q,n € Z*}. Prove
that S is the collection of Borel subsets of R.

Solution

For this proof, I will use the result of the previous exercise. Hence, define £ =
{(r,n]:r € QneZ"}, Ey ={(r,s] : r,s € Q} and consider Sy to be the smallest
o-algebra generated by Ej. Let’s denote by B the collection of Borel subsets of R.
Obviously, since E C Ey C Sy, then § C S,.

For the reverse inclusion, let’s show that Fy C S. Let (r,s] € Ey with r,s € Q.
Notice that for all integers n > r, (r,n] € E C S, hence, taking their union gives us

(r,00) = U(r,n] €S

n>r

Similarly, (s,00) € S for the same reasons. Hence, (r,s] = (r,00) \ (s,00) € S. Tt
follows that Ey C & which implies that So C S. Therefore

S§=5 =B
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Exercise 5
Suppose S is the smallest o-algebra on R containing {(r,7 + 1) : » € Q}. Prove
that S is the collection of Borel subsets of R.

Solution

Let £ = {(r,r+ 1) : r € Q} and denote by B the collection of Borel subsets of R.
Moreover, let Ey = {(r,n] : 7 € Q,n € Z*} and define Sy as the smallest o-algebra
containing Fjy. By exercise 4, we know that

So=8

Let’s show that & = B. Obviously, since every element in E is a Borel set, then
E C B which implies that S C B.

For the reverse inclusion, Let’s show that Ey C S. Let (r,n] be an arbitrary element
of By with 7 € Q and n € Z*. By definition of E, we know that for all £ > 0, the
set (1 + %k, r+ %k‘ +1) € ECS. Thus, since S is closed under countable unions,

= —_ —_ 1
(r,00) k|:1| (r+ 2k,r+ 2k+ ) €S

Similarly, (n,00) € S for the same reasons. Hence, (r,s] = (r,00) \ (n,00) € S. Tt
follows that Fy C S which implies B =8y C S. Therefore, S = B.

Exercise 6
Suppose S is the smallest o-algebra on R containing {[r,00) : » € Q}. Prove that
S is the collection of Borel subsets of R.

Solution

Let £ = {[r,00) : 7 € Q} and denote by B the collection of Borel subsets of
R. Moreover, let Ey = {(r,s] : r;s € Q} and define Sy as the smallest o-algebra
containing Ej. By exercise 3, we know that

So=8

Let’s show that S = B. Since every element of E is closed, then £ C B (closed sets
are Borel sets). It follows that S C B.

For the reverse inclusion, let’s prove that Ey C S. Let (r,s] be an arbitrary set in
Ey with r < s € Q, then by definition of F, both [r + £,00) and [s 4+ +,00) are
contained in E and hence in §. Since S is a o-algebra, then

1
(T7M):,LL:JI_T+E7%> €S

and
o -

1
= — S
(s,00) nL:Jl_s—l— n,oo) €
It follows that (7, s] = (r,00)\(s,00) € S. Hence, Ey C S which implies B=38, C S.
Therefore, S = B.
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Exercise 7
Prove that the collection of Borel subsets of R is translation invariant. More pre-
cisely, prove that if B C R is a Borel set and ¢t € R, then ¢t + B is a Borel set.

Solution

Let B C R be a Borel set and ¢ be an arbitrary real number. Let’s show that ¢t + B
is a Borel set. Consider the function f : R — R defined by x — x — t. Since f
is continuous, then f is Borel measurable. Tt follows that f~'(B) is a Borel set.
However, notice that for all x € R

v€ f1(B) & f(x)€B
<— r—teB
~— zrzet+B

Hence, t + B = f~'(B). Therefore, t + B is a Borel set which proves that the
collection of Borel sets is translation invariant.

Exercise 8

Prove that the collection of Borel subsets of R is dilation invariant. More precisely,
prove that if B C R is a Borel set and ¢t € R, then ¢tB (which is defined to be
{tb: b € B}) is a Borel set.

Solution

Let B C R be a Borel set and ¢ be an arbitrary real number. Let’s show that ¢{B
is a Borel set. Notice that the case ¢ = 0 is trivial since ¢B = {0} in that case and
{0} is a Borel set. Consider the function f : R — R defined by = — {z. Since
f is continuous, then f is Borel measurable. It follows that f~'(B) is a Borel set.
However, notice that for all x € R:

v€ fB) < f(r)eB
1
<= ;xeB
<— z€tB

Hence, tB = f~'(B). Therefore, tB is a Borel set which proves that the collection
of Borel sets is dilation invariant.

Exercise 9
Give an example of a measurable space (X,S) and a function f: X — R such that
| f| is S-measurable but f is not S-measurable.

Solution
Consider (X,S) = (R, {2, R}) and the function f: X — R defined by

f<x>={1 e

-1 <0

Notice that |f| = xr and hence S-measurable since R € S. However,

1) =00,00) ¢S
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even if {1} is a Borel set. Therefore, |f| is S-measurable but not f.

Exercise 10
Show that the set of real numbers that have a decimal expansion with the digit 5
appearing infinitely often is a Borel set.

Solution
This proof will have three steps but the idea is the following :

1. Construct the set of reals that contains no digit 5 in their decimal part in a
process similar to the construction of the Cantor set. By construction, show
that this set is a Borel set.

2. Construct, using the previous set, the set of reals with finitely many 5’s in
their decimal expansion. By construction, show that this set is a Borel set.

3. Simply take the complement of the previous set. It follows that the desired
set is Borel.

(Step 1) Let’s construct the set of reals that contains no 5 in their decimal part.
Let’s construct recursively a sequence of sets that converges to the desired set. To do
so, define the Borel set M, = R which simply represents the reals. Define M; which
represents the set of reals that contains no 5 in their first decimal and M, as the
set representing the reals with no digit 5 in their first two decimals. To generalize
this process, suppose that M, is a Borel which represents the reals which contains
no 5 in their first n decimals, to construct M, 1, simply remove from M, the reals
with a 5 in their (n + 1)st decimal. Notice that the set of of reals with a 5 in their
(n 4 1)st decimal can be written as follows : 5 (10Z + 5). Hence,

1

Mn+1 = Mn\w

(10Z +5)
By properties of o-algebras and exercise 7 and 8, M, is also a Borel set. Thus, if
we define

o0

M= (M,

n=0
by construction of the M,,’s, we have that M is precisely the (Borel) set of reals that
contains no 5’s in their decimal part (such reals can contain a 5 in their decimal
representation but only in the integer part).

(Step 2) To construct the set of reals with finitely many 5’s in their decimal expan-
sion, notice that if x € R has finitely many 5’s in their decimal expansion, then
there is a natural number n such that 10"z has no 5’s in its decimal part. From this
observation, we get that the set

|
N:L_JIWM

is precisely the set of reals with finitely 5’s in their decimal expansion. Moreover,
by exercise 8 and by properties of o-algebras, N is a Borel set.
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(Step 3) By construction, N must be the set of reals with infinitely many 5’s in their
decimal expansion. Since the collection of Borel sets is closed under complements,
then N¢ is a Borel set. We could also have shown that it has outer measure 0 by
the construction on the interval [0, 1] and then extending to the reals but the proof
would have been longer.

Exercise 11
Suppose T is a o-algebraon aset Y and X € T. Let S={EF €T : E C X}.

(a) Show that S={FNX:FeT}.
(b) Show that S is a o-algebra on X.

Solution

(a) Let £ € S, then E € T and E C X. Tt follows that E = FENX e {FNX:
F € T} Hence, S C {FNX : F € T}. For the reverse inclusion, let
F N X be an arbitrary element of {F N X : FF € T}, then F € T which
implies that FF N X € T. Moreover, FN X C X so FNX € S. Therefore,
S={FNX:FeT}

(b) First, since @ € T and @ C X, then @ € S. Now, if E is an arbitrary element
of S, then its complement, X \ F is still in 7" and obviously is a subset of X.
Hence, E¢ € S. Thus, S is closed under complements. Suppose that {E,},
is a countable collection of elements in S, then they all are in 7 and all are
subsets of X. It follows that their union is still in 7 and still a subset of X.
Hence, their union is in §. Therefore, S is a o-algebra.

Exercise 12
Suppose f: R — R is a function.

(a) For k € Z*, let

Gr = {a € R : there exists § > 0 such that [f(b) — f(c)] < ¢
for all b,c € (a —d,a+9)}.

Prove that G}, is an open subset of R for each k& € Z*.
(b) Prove that the set of points at which f is continuous equals N2, Gy.

(c) Conclude that the set of points at which f is continuous is a Borel set.

Solution

(a) Let k € Z" and let’s prove that Gy is open by proving that every point is an
interior point of the set. Let x € G}, then by definition, there is a § > 0 such
that )

W) - ) <
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for all y,z € (x — 0,z + 0). Let’s show that (x — d,x + 0) C Gj. Let 2 €
(x — 6,2 4 ) and define 6y = min(xg — z + §, 2 + J — x). It follows that

(1’0—60,$0+50> C ($—6,$+5)

Hence, for all y, z € (z¢g—do, zo+ o), we have y, z € (z— 0, x+3J) which implies

7) ~ f] < 7

Thus, xg € Gg. Since it holds for all xy € (z—0,x+9), then (x—§,2+9) C Gy.
Since it holds for all x € G, then G}, is open.

(b) Let’s show that the elements in N ,G), are precisely the points on which f
is continuous. Let x be a real number such that f is continuous at z. Let
k € Z7", then by continuity of f at x, there is a > 0 such that

1
F) ~ F@) < o
whenever y € (x — d, 2+ 0). Hence, for all b,c € (z — §,x + J), by the triangle
inequality:
1
£0) - £ <
Thus, z € Gy. Since it holds for all k € Z", then x € N2, Gy. It follows that
Cf C ﬂzozle.

For the reverse inclusion, let  be an arbitrary element of N2, Gy, let’s show
that f is continuous at x using the e-0 definition. Let € > 0, then by the
Archimedean Property of R, there is a n € Z* such that % < €. But recall
that x € N2, G C Gy, hence, there is a 6 > 0 such that

1
b) — -
£ = £(0)] <~
whenever b, ¢ € (z—0,z+9). Let y € (x—3,2+0), since x is also in (z—J, x+0),
then

F@) — f) <+ <

Thus, by definition, f is continuous at z. Therefore, N, G}, is precisely the
set of points on which f is continuous.

(c¢) The set of points at which f is continuous can be written as a countable inter-
section of open sets. Since open sets are Borel sets and Borel sets are closed
under countable intersections, then the set of points at which f is continuous
is a Borel set.

Exercise 13

Suppose (X,S) is a measurable space, Ej,..., E, are disjoint subsets of X, and
c1,...,Cy are distinct nonzero real numbers. Prove that cixg, + ... + ¢uxg, IS an
S-measurable function if and only if Fy, ..., E, € S.
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Solution
( =) Suppose that ¢;xg, + ... + ¢y XE, is S-measurable, then for all borel sets B,

(cixg, + ... +coxe,) H(B) €S
Hence, for all k € [1,n], since {c} is a Borel set, then

(e1XE + -+ euxe,) ({a}) €S

But notice that
(cixm + -+ eaxE) " ({ar}) = By

since the F;’s are disjoint and the ¢;’s are distinct. It follows that Ey, ..., F, € S.

( <= ) Suppose that Ey,...,E, € S, then for all £ € [1,n], the function xg, is
S-measurable. Moreover, for all k£ € [1,n], since g : © — ¢z is continuous, then it
is Borel measurable. It follows that cyxg, = gk © XE, IS S-measurable. Since mea-
surable functions are closed under addition, then ¢y x g, +...+ ¢, X g, is S-measurable.

Exercise 14

(a) Suppose f1, fa, ... is a sequence of functions from a set X to R. Explain why

{z € X : the sequence fi(x), fo(z),... has a limit in R}

[c ol SlNe o)

=AU = (=21 2)).

n=1j=1 k=5

(b) Suppose (X,S) is a measurable space and f1, fa, ... is a sequence of S-measurable
functions from X to R. Prove that

{z € X : the sequence fi(x), fo(x),... has a limit in R}

is an S-measurable subset of X.

Solution
(a) First, to make it easier to read, denote by E the set
{z € X : the sequence fi(x), fa(x),... has a limit in R}

Let © € E be arbitrary, then by definition, the sequence {f,(z)}, is a con-
vergent sequence in R. It follows that {f,(z)}, is a Cauchy sequence. Let
n € Z, since % > 0, then there is a j € ZT such that

) ful)] < -

for all a,b > 7. In particular, for all £ > 7, we have

)~ fula)| < -
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Notice that this can be written as

< (- S <

n

which again can be written as

r e (fj— fk)_l((—%a =)
Since it holds for all 7 > k, then

ve 0= (=2 2)

Since there is a k € Z* such that it holds, then

Since it holds for all n € Z*, then

[c ol SlENe o)

ce YUN =) (=53

n=1j=1k=j

It follows that £ C (o2, U2, Maz, (i = fi) (=5, 2))-
Now, for the reverse inclusion, suppose that

[c ol cllNe o)

ve (VUM =75 2)

n=1 j=1k=j

Let’s prove that {f.(z)}, is a Cauchy sequence.
Archimedean Property, there is an integer N € Z™ such that % < €. By our

Let € > 0, then by the

assumption on z, it follows that

ve [JO = i) (=3 2v)

j=1k=j

But it means that there is a j € Z™ such that
re (i = fi) " ((—3% =)
k=j

Let r,s > 7, then the previous statement about x, it implies that

and
z e (fi—f)  ((—3x: 3%)

which are both equivalent to

1
55(@) ~ Fo@)] < 5
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1

|fi(x) — fo(2)| < IN

By the triangle inequality, this gives us

@)~ @) < 5 <

Thus, {f.(z)}, is a Cauchy sequence and by completeness of R, we get that
the sequence {f,(z)}, converges in R. Therefore,

[c ol SlENe o)

E=UNG = (=0)

(b) Since for all n,j € Z* and k > j, the function f; — fi is S-measurable, then

(fi = f)H(=5.5) €S

since (—%, 1) is a Borel set. Since it holds for all £ > j, then
ﬂ(fy — [ (=5,5) €S
k=j

Similarly, since it holds for all j € Z*, then
j=1

Again, since it holds for all n € Z*, then

D)

(=5 (b es

k=j

(e OlNe SlNe )

NAUNG - (-1 es

n=1j=1k=j

which proves our claim.

Exercise 15

Suppose X is a set and FEq, Fs, ... is a disjoint sequence of subsets of X such that
UzoilE'L =X. Let § = {UkGKEk K C Z+}

(a) Show that S is a o-algebra on X.

(b) Prove that a function from X to R is S-measurable if and only if the function
is constant on E), for every k € Z*.

Solution

(a) Since this statement is a generalization of Exercise 1, then the proof will be
very similar. As most of the proofs showing that a collection is a o-algebra,
let’s split this one into three parts:
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e (€ S8)Since @ C Z, then Upex Ey € S. However, notice that Ugegy By, =
@. Tt follows that @ € S.

e (closed under complements) Let A € S, then there exists a Ky C Z such
that A = Ugeg,Er Consider K7 = Z \ K, and its associated element
B = Uek, Erin S. Since ANB =@ and AU B = X, then B= X\ A.
Hence, A¢ € S which proves that S is closed under complements.

e (closed under countable union) Let {A;}; be a countable collection of
elements in S, then for all i € Z™T, there is a subset K; of Z such that
A; = Ugek, E. Consider K = U K; C Z and A = Upeg B, € S. By
consruction, A = U®;A; € §. Therefore, S is closed under countable
union.

Therefore, S is a o-algebra on X.

(b) Let f: X — R, suppose first that f is constant on Ej, for every k € Z*. Call
¢, the constant value of f on Ejy. To show that f is S-measurable, let B C R
be a Borel set. Notice that

By =r'Bnf{a) = | Ecs

k;cp€B

It follows that f is S-measurable.

Suppose now that f is not constant on all E}’s, then, there is a ky € Z* and
distinct real noumbers a and b such that both a,b € f(Eg,). What we get
is that f~1({a}) € E,. Hence, since that E}’s are disjoint, then we cannot
write f~!'({a}) as a union of E}’s. Thus, f~!({a}) ¢ S even if {a} is a Borel
set. It follows that f is not S-measurable.

Exercise 16
Suppose S is a o-algebra on a set X and A C X. Let

Sa={FEe€S:ACFEor ANE =0}
(a) Prove that S4 is a o-algebra on X.

(b) Suppose f: X — R is a function. Prove that f is S-measurable if and only if
f is measurable with respect to S and f is constant on A.

Solution

(a) First, since @ € S and @ C A, then @ € S4. Now, take an arbitrary set F in
Sy, then we either have AC For ANFE = @:

e If AC E, then X\ F C X\ A. It follows that (X \ E)N A = &. But
since X \ F € S, then X \ E € S4.

o If ANE = &, then for all x € A, having x € F would lead toz € ANE #
@ which is a contradiction. Hence, z € X \ E. Hence, A C X \ E. But
since X \ £ € S, then X \ F € S4.
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In all cases, we get that E° € Sx. Now, let {E;}; be a countable collection
of elements in S4, let’s show that U, E; € Sy by cases. If each E; satisfy
AN E; =@, then we must have AN U E; = &. Since U2, E; € S, then we
get that U2, E; € S4. However, if one of the E;’s satisfies A C Ej, then we
get

ACE; C DE
i=1

Thus, in both cases, it follows that U°, E; € S4. Therefore, S, is a o-algebra.

(b) ( =) Suppose that f is Sa-measurable and let B be a Borel subset of R,
then
f_l(B) €eS4CS

which proves that f is S-measurable. Suppose that f is nonconstant on A, then
there exist zg,z; € A such that f(x) # f(z1). Consider f~'({f(x¢)}), then
by our assumption, it is contained in S (since {f(xo)}isaBorelset). Hence,
it means that one of A C f~'({f(z0)}) or AN f~1({f(z0)}) = @ holds. But
A C f~1({f(xo)}) cannot hold since z; € A and 1 ¢ f~({f(20)}). Similarly,
for the same reason, AN f~'({f(zo)}) = @ cannot hold as well. From this
contradiction, we get that f must be constant on A.

( <) Suppose that f is S-measurable and f = c on A for some ¢ € R. Let
B C R be a Borel set, then, by our assumption, f~!(B) € S. Now, notice
that we either have ¢ € B or ¢ ¢ B. If ¢ € B, then it follows that A C f~!(B).
In that case, f~1(B) € Sa. If ¢ ¢ B, then no elements of A are in f~!(B).
Hence, AN f~1(B) = @. Again, in that case, f~'(B) € S4. Therefore, f is
S 4-measurable.

Exercise 17
Suppose X is a Borel subset of R and f : X — R is a function such that
{z € X : f not continuous at z} is a countable set. Prove that f is a Borel measui-
able function.

Solution
Fix a € R and let’s show that f~!((a,o0)) is a Borel set. Let x € X, then z €
f7Y((a,00)) if and only if f(x) > a. If f is continuous at z, then there is a §, > 0
such that

f((x = ds,2+6,) N X) C (a,00)

which can also be written as
(x —6pyx+30,)NX C f((a,00))

It follows that

f((a,0)) = | XN U (x — g,z +0,)| U{x € X : f not continuous at =}

x : f is conti-
nuous at x

But notice that U, (x — d,,z + J,) is an open set so it is also a Borel set. Since X is
Borel as well, then X NU,(z — §,, 2 + d,) is a Borel set. It follows that f~'((a, 00))
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is a Borel since any countable set is a Borel set. Therefore, f is Borel measurable.

Exercise 18
Suppose [ : R — R is differentiable at every element of R. Prove that [’ is a Borel
measurable function from R to R.

Solution
Consider the sequence fi, fs, ... of functions defined as follows:

fla+3) - f@)

fn(‘r) =

S |-

for all z € R and n € Z*. Since f is differentiable, then f is continuous. It follows
that each f,, is continuous as well and consequently, Borel measurable. Now, notice
that for all z € R,

lim f,(z) = lim f ; = f'(x)

n—oo n—oo

Thus, f’ must be Borel measurable as well.

Exercise 19

Suppose X is a nonempty set and S is the o-algebra on X consisting of all subsets
of X that are either countable or have a countable complement in X. Give a char-
acterization of the S-measurable real-valued functions on X.

Solution

In this proof, T will show that that the S-measurable functions are precisely the
functions that are constant except on a countable set. Notice that the case where
X is finite or countable is easy to prove since in that case, S = 2% and hence,
every function is S-measurable. Moreover, every function is constant except on a
countable set. Hence, the characterization is proved in that case.

Suppose that X is uncountable. Let f : X — R be a function such that f is
constant except on a countable set. It follows that there is a g € X such that
f(z) = f(xp) for all x € X except for countably many z. Let a € R and consider
the set f~1((a,0)). If a > f(xq), then for all z € X,

€ [ ((a,00) = f(z)>a
= [f(z) > f(w0)
— f(z) # f(xo)
= ze{reX: fz)# f(x)}
Hence,
fH(a,00)) € {z € X = f(x) # flwo)}

which is countable. It follows that f~'((a,00)) € S. If a < f(xg), then similarly, for
allz € X,

€ f(a,0) = f(z)<a
= f(z) < f(wo)
— ze{reX: f(x)# f(zo)}
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which implies
fH(a,00)) C {z € X1 fx) # flw0)}

Hence, f~'((a,00))¢ is countable so f~((a,0)) € S. Therefore, since it holds for
all cases and for all a € R, it follows that f is S-measurable.

For the converse, consider an S-measurable function f and let’s show that it is
constant on a countable set. Define the sets

A={aeR: f*((a,00)) is countable}

B={beR: f((—o0,b]) is countable}

By the assumption that f is measurable, we must have A U B = R. Moreover, if
xr € AN B, then both f~!((x,00)) and f~*((—o0, x]) are countable. However,

X = f(z,00)) U f((—o0,])

which would imply that X is countable. A contradiction since we assumed that X
is uncountable. Hence, AN B = &. Now, notice that both A and B are nonempty.
By contradiction, if B = &, then A = R. Hence, for all n € Z*, we get that
f7Y((=n,0)) is countable. However, since

x = ((-n00))

then it would imply that X is countable. A contradiction that shows that B is
nonempty. The proof for A is the same. The last two important properties of A and
B are the following, if a € A and «’ is a really number greater than a, then o’ € A.
Similarly, if b € B and b’ is a real number smaller than b, then v/ € B. Let’s prove
it for A only (the proof is the same for B). Let a € A and @’ > a, then

(a’,00) C (a,00)

which implies
fH(d',00)) € f7((a,00))

But f~'((a,0)) is countable so f~'((a’,00)) is countable as well. It follows that
a € A.
All of these properties of A and B show that A is nonempty and bounded below
by any element of B and B is nonempty and bounded above by any element of A.
Moreover, since AU B = R, then sup B = inf A. Define ¢ = sup B, then we either
have

B = (—00,c¢) A =[e,0)

B = (—o0, (] A = (¢,00)

In both cases, we have

(—o00,c)C B and (¢,00) C A
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Thus, for all n € Z*, we have ¢ — % € B and c+ % € A. Tt follows that

_ [j<<_oo,c_ﬂ>uf—l([j @;,oo))

n=1

0 (e o0 (2)

n=1

which shows that f~!(R.\ ¢) is countable since it the union of two countable unions
of countable sets. Thus, it means that f(z) # ¢ only for countably many = € X.
Therefore, f is constant except on a countable set.

Exercise 20

Suppose (X, S) is a measurable space and f,g: X — R are S-measurable functions.
Prove that if f(z) > 0 for all € X, then f9 (which is the function whose value at
r € X equals f(z)9%) is an S-measurable function.

Solution
First, recall that both functions

In:(0,00) = R

exp: R — [0, 00)

are continuous on their respective domains (which are Borel sets). Hence, both
function of Borel measurable. Since Im(f) C (0,00), then Inof is S-measurable.
Since g and Inof are both S-measurable functions from X to R, then g - (Inof)
is S-measurable. Again, since Im(g - (Inof)) C R and exp is S-measurable, then
f9=expo(g-(Inof)) is S-measurable.

Exercise 21
Prove 2.52.

Solution
Suppose (X, S) is a measurable space and f : X — [—00, 00] is a function such that

fH(a,0]) €S
for all @ € R. Let’s show that f is S-measurable. To do so, define the collection
T ={AC[~o0,00]: f1(A) €S}

By properties of the inverse image of f, the collection T is a o-algebra. Moreover,
by our assumption on f, {(a,00] : a € R} C T. Let (a,b) be an arbitrary open
interval, since (a,b) = (a,00] \ (b,00] and T is closed under set differences, then
(a,b) € T. Since it holds for all open intervals, then T" contains every open interval.
Since every open set can be written as a countable union of open intervals, then T’
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contains every open set. Since T is a o-algebra that contains every open set, then
it must contain every Borel subsets of R. Now, since

{oo} = [(n.oc] €T
and -
{—o0} = ﬂ[—oo,n] eT

Then every Borel subset of [—00,00] is contained in T. Therefore, for all Borel
subset B of [—o0, o],

f(B)es
It follows that f is S-measurable.

Exercise 22
Suppose B C R and f : B — R is an increasing function. Prove that f is continuous
at every element of B except for a countable subset of B.

Solution

First, let’s prove that every discontinuity is a jump discontinuity by showing that
the left and right limits at a point always exist. Let xzy € B and notice that if
there is no « € B such that < xo, then it follows that lim,_, - f(z) = f(zo).
Hence, suppose that there some points x € B such that © < xy and consider the set
E. ={f(z) : * < xp}. By our assumptions, the set £, is nonempty and bounded
above by f(zo). Hence, by completeness of R, we can define s = sup £, . Moreover,
by properties of the supremum, it is easy to see that s = limxﬁxa f(z). Thus, for all
xo € B, its left limit exists. Similarly, if we define the set Ef = {f(z) : > 2} and
take its infimimum, we get that limx_mg f(x) exists as well. Hence, for all x € B,
to make the notation lighter,

flz—=) = lim_f(z)

JL’HIO

fla+) = lim f(z)
z—ad
Since f is increasing, then for all x € B, we have that f(x) is an upper bound for
E- and a lower bound for E. It follows that f(z—) < f(xz+) for all x € B.
Consider now the set Dy of discontinuity points of f. Notice that for all d € Dy, we
can define the sets

Fy={reB:x<d}=(—00,d)NB

Ff={reB:x>d}=(d,0)NB

Notice that there are at most two points such that one of F; and F}/ is empty. Let A
denote the set of such points, then our observation can be translated by card(A) < 2.
Now define B={d € D; : supF; = inf Fj = d} and C = D;\ (AU B). By con-
struction, we have AU BUC = Dy. Since A is finite, our goal now is to prove that
both B and C are countable.
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For all d € B, we must have sup F; < d or inf Ff > d. If sup F; < d, then
define g; to be any rational inside the interval (mg,d) where m, is the midpoint

between sup F; and d (i.e. my = SUP};‘;M). Otherwise, if inf F}} > d, define g, to

be any rational inside the interval (d,m/;) where m/, is the midpoint between inf

et
and d (i.e. m), = W) Now, let’s prove that the function g : B — Q defined by
d — qq is injective. Let dy,ds € B such that d; < dy, let’s show that g4, # q4, by

cases.

o If supF, < dy and supF, < d, then gq and g4, are rationals between
(may,d1) and (mg,,ds) respectively. It follows that g4 < di. Moreover,
sup F;, < mg, < qa, and dy € F so

qa, < dy <supFy <d
which shows that ¢4, # qu,.

e If supF,; < d; and inf th > dy, then g4, is a rational inside the interval
mg,,dr) and qg, is a rational inside the interval (ds, m/, ). Hence, g4, < d;
1 2 d1 1
and ds < qq,. It follows that

qa, < di < dy < qq,
which shows that ¢4, # qu,.

e If inf FCZ > dy and sup F, < da, then g4 is a rational inside the interval
(dy,mj; ) and qq, is a rational inside the interval (mg,,dy). Hence, g5, < m)
and mg, < dy. Since d; € F, then dy < sup F, similarly, inf F} < d,.
Hence:

ian;;—kdl < ds + dy < sup F; + da
2 -2 = 2

le < md1 - - md2 < ng

which shows that ¢4, # qu,-

o If inf Ff > dy and inf Fj} > dy, then ¢q is a rational inside the interval
di,m/, ) and qq, is a rational inside the interval (dy,m/ ). It follows that
dq1 2 do
qa, < mjy, and dy < qq,. Since dy € F, then

qdy < mﬁll < inf th <dy < dds
which shows that g4, # qu,-

Therefore, g is injective so card B < cardQ which implies that B is countable.
Let’s now prove that C' is countable. Let d € C. Since f is continuous at d if and
only if f(d—) = f(d+), then f is discontinuous at d if and only if f(d—) < f(d+).
It follows that f(d—) < f(d+). Hence, define g; to be any rational in the nonempty
interval (f(d—), f(d+)). Let’s prove that the function h : C' — Q defined by d — ¢4
is injective. Let di,dy € C such that d; < do. Hence, by definition of C, we must
have d; = inf Fjg. It follows that there must be a x € B such that d; < z < ds.
Hence, by monotonicity of f, we have f(dy) < f(z) < f(dy). By definition of E}
and E , we have

fldi+) =inf Ej. < f(x) <supE, = f(dy—)
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Therefore,
qa, < f(di+) < f(do—) < qa,
which shows that ¢4, # qq4,. Hence, h is injective so cardC < cardQ. Thus, C is

countable. Since Dy = AUBUC and A, B, and C are countable, then D; must be
countable as well. Therefore, f is continuous except on the countable set Dy.

Exercise 23

Suppose f : R — R is a strictly increasing function. Prove that the inverse function
f~': f(R) — R is a continuous function.

[Note that this exercise does not have as a hypothesis that f is continuous.]

Solution
Let xy € f(R) and let’s prove that

lim f~'(z) = f(x0)

T—TQ
Let € > 0 and define z; = f~!(z¢) — € and x5 = f~!(z9) + € which are both in the
domain of f~1. Notice that z; < 1y < zo. Let § = min(xy — x1, 22 — 70) and let
z € f(R) such that 0 < |x — x| < J, hence:

T < <x9 = f(f Hwo)—€) <a< f(f H(x0) +6)
— [ (o) —e < [T (x) < [T (wo) + €
= |7 (x) = [ (wo)le

So lim, 4, f~'(x) = f~!(x) which implies that f~! is continuous at x. Therefore,
f~1is continuous on f(R).

Exercise 24
Suppose B C R is a Borel set and f : R — R is a strictly increasing function. Prove
that f(B) is a Borel set.

Solution
First, we show that f(R) is a Borel set. Since f has countably many discontinuities,
then we can enumerate them as d;,ds, .... Let i € Z*, define

Dy = [f(di=), f(dit)]\ {f(di)}

which represents the set of points not attained by f because of d;. In this proof, I
denote by f(z—) the limit of f as z — x from the left and f(x+) the limit of f as
z — x from the right. Notice that each D; is a Borel set so U2, D; is a Borel set as
well. Define now

Iy = [sup f,0)
R

and consider that I, = @ if f is unbounded below and I); = @ if f is unbounded
above. Again, in all cases, both I,,, and I, are Borel sets. It follows that the set

I=R\ [[mUIMUGDi]

=1

is a Borel set. The main goal of this proof is to show that f(R) = I.
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o (=) Letyel,Uly U2, Di. Let’s prove by cases that y € R\ f(R).

— Ify € I,,, then y < infg f. If y = f(x0) for some 2y € R, then strict
monotonicity of f, we have:

: < _ <
1rf1{ff_f(x0 1)<y_1rf1{ff

A contradiction that shows that y € R\ f(R).
— If y € 1), the proof is the same as in the previous case.

— If U2, Dy, then there is a @ € Z* such that y € D; = [f(d;—), f(di+)] \
{f(d;)}. Suppose by contradiction that y = f(z) for some zy € R. Since
y # f(d;), then we either have zy < d; or d; < xy. Suppose without loss
of generality that z¢ < d;, then y € {f(z) : < d;} which implies that

y <sup{f(z):z <d;}

But y € [f(di—), f(dit)| \ {f(di)} soy > f(di—) = sup{f(z) : z < di}.
It follows that y = sup{f(z) : * < d;}. However, since zy < d;, then
there exists a x1 € (xo,d;). Since zg < x; and 27 < d;, then

sup{f(z) :z <d;} =y = f(xo) < f(z1) <sup{f(z):z < d;}
A contradiction that shows that y € R\ f(R).
Therefore, I,,, U Iy UJ;2, D; C R\ f(R) which is equivalent to f(R) C I.

e ( <) Let’s now prove the reverse inclusion. Let y € R\ f(R), if y < f(2)
for all z € R, then y € I,,, C I, U,y UUJo, D;. If y > f(x) for all z € R,
then y € Iy C I, ULy U2, D;. Hence, we can suppose that there exist real
numbers z; and x9 such that f(z1) <y < f(z3). Consider now the sets

A ={reR: f(z) <y}

Ay ={r e R: f(z) >y}

Since 1 € A; and x5 € A,, then the sets are nonempty. Moreover, since
y # f(z) for all x € R, then A; U A; = R.. Since f is strictly increasing, then
any element of A, is an upper bound for Ay, it follows that there is a ¢ € R
such that either

Ay = (—o0, (] Ay = (¢, 00)

or

Ay = <—OO,C) Ay = [Ca OO)
Suppose without loss of generality that f(c) < y, then
Ay = (—OO,C] Ay = (Cv OO)

Let’s show that f is discontinuous at c. Since y is a lower bound for the set
f(As), then y <inf f(As). However, since f is increasing, notice that

fle+) =inf{f(z) : x > ¢} =inf f((c,00)) = inf f(A3)
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Thus,
fe) <y <inf f(As) = f(c+)

which shows that f is discontinuous at ¢ (otherwise, we would have f(c) =
f(c+)). Thus, there is a i € Z" such that ¢ = d;. Hence,

y € (f(di), f(di+)] CDiCIMCImUIMUUDi

i=1
Therefore, R\ f(R) C Iy C I,,UIUJ;-, D; which is equivalent to I C f(R).

Now that we showed that f(R) = I, it follows that f(R) is a Borel set. Using the
previous exercice, we get that f~! : f(R) — R is a continuous function, hence,
Borel measurable. It follows that (f~1)~!(B) is a Borel set. However, since

B ={yef®R): f(y) e By ={ye fR):y € f(B)} = f(B)
then f(B) is a Borel set.

Exercise 25
Suppose B C R and f: B — R is an increasing function. Prove that there exists a
sequence fi, fo, ... of strictly increasing functions from B to R such that

f(z) = Jim ful)

for every z € B.

Solution
Consider the sequence of functions fi, fs, ... defined by
1
ful#) = f(2) + 2a

for all z € B and n € Z*. Since f is increasing and %x is strictly increasing for all
n € Z*, then every function in the sequence is strictly increasing. Moreover, for all
x € B:

lim fx(z) = f(z) + « lim % = f(x)

k—o0 k—o0

which proves our claim.

Exercise 26
Suppose B C R and f: B — R is a bounded increasing function. Prove that there
exists an increasing function g : R — R such that g(z) = f(z) for all x € B.

Solution
First, assume that B is non empty. For all € R, define the set

E,={f(y):y<=z, ye B}

Consider the function g : R — R defined by

supb, iftE,#0
g(z) = 1. .
infr f ifE, =0
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Notice that g is well defined since f is bounded. Let’s show that g|p = f. Take
x € B and notice that E, is non empty since it contains f(z). Moreover, since f is
increasing, then f(x) is an upperbound for E,. It follows that g(x) = sup E, = f(z).
Let’s now show that g is increasing. If we take a,b € R such that a < b, then we
can proceed by cases.

e If both a and b are in B, then g(a) < g(b) follows from the fact that f is
increasing :

g(a) = f(a) < f(b) = g(b)
e If a € Bbut b¢ B, then f(a) € E, # @ which implies

g9(a) = f(a) < sup B, = g(b)
e If a ¢ B and b € B, then either F, is empty and we get
g(a) = inf f < f(b) = g(b)
either F, is nonempty and we get that f(b) is an upperbound for E,. Hence:
g(a) = sup B, < f(b) = g(b)

e If both a and b are not in B, then we, again, have different possible cases.

— If By = &, then we must have FE, = & as well since £, C E;. Hence,
g(a) = g(b) = inf f

— If By, # @ and E, = &, then there exists a © € B such that f(x) € E,.
It follows that

g(a) =inf f < f(z) < sup £, = g(b)

— If By # @ and E, # @, then we get F, C FE, which implies that sup F, <
sup . Thus:
g(a) = sup E, < sup E, = g(b)

After this tedious proof by cases, we now have shown that ¢ is an increasing function
that extends f on R.

Exercise 27
Prove or give a counterexample: If (X, S) is a measurable space and

f:X — [—o00, 0]

is a function such that f~!((a,o0)) € S for every a € R, then f is an S-measurable
function.
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Solution
Let X = R and S be the g-algebra of subsets of R that are either countable or have
a countable complement. Define f: X — [—o00, 00| as

f(x):{+oo ifz>0

—o00 ifz<0

Notice that for all @ € R, we have f~!((a,00)) = @ € S. However, we cannot

conclude that f is S-measurable because {oco} is a Borel subset of [—o0o, 00| but
f'({oc}) =[0,00) ¢ S. Therefore, f is not S-measurable.

Exercise 28
Suppose [ : B — R is a Borel measurable function. Define g : R —+ R by

) f(x) ifreB
g(x)_{o ifreR\B

Prove that ¢ is a Borel measurable function.

Solution

Fix a € R and let’s show that ¢g7'((a,00)) is a Borel set. First, notice that B is
a Borel set since B = f~!(R) and f is Borel measurable. If @ > 0, then we can
show that ¢g7'((a,0)) = f~((a,0)) : if g(x) > a > 0, then it must be that x € B
which implies that f(z) = g(x) > a; and if f(z) > a, then it directly follows that
g(z) = f(z) > a. Thus, g7'((a,0)) is a Borel set. Now, if a < 0, then for the same
reasons as above, g~!((a,00)) = f~!((a,0)) U (R \ B) which is again a Borel set.
Therefore, g is Borel measurable.

Exercise 29

Give an example of a measurable space (X,S) and a family { f; };cr such that each
ft is an S-measurable function from X to [0, 1], but the function f : X — [0, 1]
defined by

f(z) = sup{fi(z) : t € R}

is not S-measurable.
[Compare this exercise to 2.53, where the index set is Z" rather than R.]

Solution

Let X = R and S be the o-algebra of subsets of R that are countable or have a
countable complement. For all ¢ < 0, define f; to be the constant function zero.
If £ > 0, define f; = xyy. For each ¢ € R, the function f; is S-measurable by
construction. However, notice that the function defined by

f(z) =sup{fi(z) : t € R}

for all z € R is simply the characteristic function of the interval [0, 00), i.e. f =
X[0,00)- But we know that xg is S-measurable if and only if £ € §. However,
[0,00) ¢ S so f is not S-measurable.
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Exercise 30
Show that
lim (lim (cos(jlmx))

oo \k—oo 0 if z is irrational

Qk) _ {1 it  is rational,

for every z € R.
[This example is due to Henri Lebesgue.]

Solution

Let x € R and consider the case where x is a rational number, then, there exist
a € Z and b € Z* such that x = a/b. For all j > b, we have jlx € Z since j! is a
multiple of b which cancels out with the denominator of z. But we know that the
cosine of an integer multiple of 7 is either 1 or -1, hence, for all k € Z*, we have
cos(j!lmr)® = 1. Since it holds for all k € Z*, then

lim (cos(j!rz))?* =1
k—ro0

Since it holds for all j large enough, i.e. j > b, then

lim <lim (cos(j!wx))2k> =1

j—o00 \k—o0

Now, consider the case where z is irrational and let j € Z*. Since the cosine of
ym is 1 or -1 if and only if y is an integer, then cos(j!wz) € (—1,1) since jlz is an
irrational number. It follows that (cos(j!mx))? is also in the interval (—1,1). Hence,
if we think of {(cos(jlmz))?*}, as a geometric series with ¢ = (cos(j!7x))?, then

lim ( lim (COS(j!?TZE))2k> =0

j—oo (k—)oo

Since it holds for all j € Z™, then

lim (lim (COS(j!?TZI}))Zk) =0

j—o00 \k—o0

which proves our claim.
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2C Measures and Their Properties

Exercise 1
Explain why there does not exist a measure space (X, S, 1) with the property that
[u(E): E € S} =0,1).

Solution
By contradiction, let (X, S, 1) be such a measure space. Hence, by our assumptions,
pu(X) < 1. However, if we let « be any real number in (u(X), 1), then a € {u(FE) :
E € 8§} which implies that there is a set F' € S such that u(F) = a. But F' C X,
so by monotonicity:

p(X) <a=pF) < p(X)

A contradiction. Therefore, such a measure space cannot exist.

Exercise 2
. + . .
Suppose p is a measure on (ZT,2%7). Prove that there is a sequence wy, ws, ... in

[0, 00] such that
WE) =) w
keE
for every set & C Z™.

Solution
First, define the sequence {wy} as follows

wy = p({k})

for all k € Z*. Hence, for all E € 22", we can write E as the disjoint union of
the singletons of its elements. This disjoint union is either finite or countable since
E C Z*. Therefore, by finite or countable additivity:

u(E) = p (U {k})

keE

= u({k})

keE
=2
which proves our claim.

Exercise 3
Give an example of a measure y on (Z1,2%") such that

{(u(E): E CZ'} =0,1].

Solution
Define a measure p on (Z+,2%") by:

n(E) =
keE

1
ok
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To prove that {u(E) : E C ZT} = [0,1], let ¢ € [0,1] and let’s show that there is a
E C Z7 such that u(E) = c¢. Notice that ¢ has a binary representation of the form:

=~ 1
k=1
where the a;’s are either 0 or 1. Hence, if we define £ = {k : a; = 1}, we get

w(E) :Z%:Zak%:c
k=1

keE

which proves our claim.

Exercise 4
Give an example of a measure space (X, S, i) such that

{u(E): EC Z%} = {oo} U | J[3k, 3k +1].
k=0
Solution
Let X = Z, S = 2% and define u by
L oifr>1
]’C — 2k 1 ]
) {3 ez

Simply use the countable additivity of u to extend g on all of 2% and not just the
singletons. Let’s show that for all ¢ € {co} UlJ,—,[3k, 3k + 1], there is a E C Z such
that pu(F) = c. First, consider the case ¢ = oo, then defining £ = {—k : k > 0}
gives us

p(E) =Y p({k}) =Y p({—k}) =) 3=0

keE
Now, consider the case ¢ € [3k,3k + 1], then there exists an integer £k > 0 and a
real number « € [0, 1] such that ¢ = 3k + a. Since we can write « in binary form as

follows:
=1
C = ; Cln2—n

where the a,,’s are either 0 or 1, then we can define the set £ ={—-n:n € [1,k]}U
{neZt:a, =1}

w(E) —n:n€[LE}U{neZ" :a,=1})

—n:n€[LE]})+pu({neZt :a,=1})

p({=n}) + Y anp({n})

3+ Z an2in
1 n=1

k+ «

1(
1

Il
(]~
——

1

S
I

B

I
w =

=C
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Since we covered all cases, we have,

[e.e]

{oo} U | JIBk, 3k + 1] C {u(E) : EC Z7}

k=0

For the reverse inclusion, consider £ C Z and let’s show that u(F) € {occ} U
Upeo[3k, 3k 4 1]. To do so, notice that by definition of x, we get

pwE)=p({keE:E<0})+u({ke E:k>1})

= > ul{k}) + > arp({k})

kel k
k<0
o
3 1
kel k=1
k<0

- 1
:3card{k‘€E:k‘§0}+Zak-%

k=1

where a; = 1 when k € E, otherwise, ay = 0. If the set {k € E : k < 0} is infinite,
then p(E) = 0o € {oo}UUre,[3k, 3k+1]. If the set is finite, define n = card{k € E :
k < 0} and notice that the term a = Y7, aj- 5 is simply the binary representation
of a number in [0, 1]. Hence, u(E) = 3n+a € [3n,3n+1] C {oo} UJ— 3k, 3k +1].
Thus,

[e.e]

{w(E): EC Z*} C {oo} U J[3k, 3k + 1]
k=0
Therefore,
{u(E): EC 2"} = {oo} U | J[3k, 3k + 1]
k=0
Exercise 5

Suppose (X, S, 1) is a measure space such that pu(X) < oco. Prove that if A is a
set of disjoint sets in S such that p(A) > 0 for every A € A, then A is a countable set.

Solution
Let n € Z™ and define the collection

A, ={AeA:pu(4)>1}

Suppose that A, is infinite, then we can extract a countable sequence {A,}, of
sets in A,,. Since the A,’s are disjoint and in S, then U A, € S. Moreover, by
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monotonicity, we get

A contradiction. Thus, for all n € Z™, the collection A, is finite. But since

A= G A,
n=1

is a countable union of finite sets, then A is countable.

Exercise 6
Find all ¢ € [3,00) such that there exists a measure space (X, S, 1) with

{W(E): EeS}=10,1] U3,

Solution
Let ¢ € [3,00) and suppose that there exists a measure space (X, S, 1) such that

{W(E) : E€ 8t =[0,1U[3,¢

Since p(X) is both in the set {u(£) : £ € S} and an upperbound for the set
{pW(E) : E € S}, then

p(X) = sup{u(E) : E € §} = sup([0,1]U [3,¢]) = ¢
Since there is a £ € S such that p(E) = 1, then
wX\E)=c—1

It follows that ¢ cannot be in the interval [3,4) (otherwise, we would get a set of
measure in the interval |2, 3) which would contradict our assumption on the measure
space). Hence, we must have ¢ > 4. Suppose that ¢ > 4, then 3 < ¢ — 1 which
implies that there must be a € € (0,1) such that 3 < ¢ — 1 —e. Hence, there must
be a set F € S such that u(E) =c¢—1—e. Thus:

XN\ E) = p(X) — p(E)
=c—(c—1—¢)
=1+4c¢
€(1,2)
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which is a contradiction. Therefore, the only possible value for ¢ is 4. Let’s now
prove that there actually is a measure space (X, S, 1) such that

{u(E) : E € S} = [0,1]U[3,4]
Consider the set X = Z* U {0}, S = 2% and define the measure y by

() = {3 S

1
5w ifn>1

We can easily extend the definition of i to any subset of X by countable additivity.
Let’s now show that this measure space has the right property. Let ¢ € [0,1] U [3, 4]
and let’s show that there is a set £ C X such that u(E) = c. If ¢ € [0, 1], then write

¢ in its binary form:
= 1
C = Z Clnz—n
n=1

where the a,’s are in the set {0,1}. Define the set £ = {n € Z* : a, = 1} C X.
Hence, by construction:

=S ) =Y =

Similarly, if ¢ € [3, 4], consider the binary expansion of ¢ — 3, construct the set E as
previously and add the element 0 to the set, we would get: pu(E) =3+ ", b, 21" =

34 c¢— 3 = c Thus,
0,1]U[3,4] Cc {u(E): E €S}

To prove the reverse inclusion, let £ C X. If 0 € E, then
=1
E)=3 n— € (3,4 0,1]U[3,4
) =3+ Yty € B4 € 01U
Similarly, for the same reasons, if 0 ¢ E, then u(E) € [0, 1] C [0, 1]U[3,4]. Therefore,
{w(E): EeS}=[0,1U[3,4]
which proves that ¢ = 4 is the only possible value.

Exercise 7
Give an example of a measure space (X,S, i) such that

(W(E): Ee 8y =[0,1U[3,00)

Solution
Consider the measure space defined by X = Z, S = 2% and p defined by

L ifk>1
k — 2k 1 -_ 9
H(ik}) {3—k if k<0
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From this, it is easy to extend the definition of p to any subset of Z. Let’s show
that
{w(E): E eS8} =[0,1]U[3,00)

First, let E C Z and split it into By ={k € E: k> 1} and Ey = {k € F: k <0}
which are disjoint. Notice that by countable additivity, u(FEs) can be written as
P anzin where a, is 0 when k ¢ E and 1 when & € E. But notice that this is
simply a base 2 representation of a number in [0, 1]. Hence, u(E>) € [0, 1]. Now, for
E4, notice that u(E;) is a sum of integers greater than or equal to 3 by countable
additivity. It follows that p(F1) is either 0 (if it is empty) or an integer greater than
or equal to 4. Therefore:

1(E) = p(Er) + p(E») € [0,1] U [3,00)

which shows that
{u(E): E € §} € [0,1] U [3,00)

For the reverse inclusion, Let ¢ € [0,1] U [3,00) and let’s show that there is a subset
E of Z such that u(E) = c. If ¢ € [0, 1], write it in binary form as > ° | a,5: and
define the set £ = {n : a, = 1}, it follows that

p(E) = i) = >y =c

keE

Similarly, if ¢ € [3, 00), then there is an integer ¢y > 3 and a real a € [0, 1] such that
¢ = ¢y + a. As previously, write o in base 2 and define the set E in the same way.
Moreover, add to the set E the integer 3 — ¢y, it will follow that pu(F) = ¢y +a =c
for the same reasons as above. Therefore,

{nw(E): E€8}=[0,1]U[3,00)
which proves our claim.

Exercise 8

Give an example of a set X, a o-algebra S of subsets of X, a set A of subsets of X
such that the smallest o-algebra on X containing A is S, and two measures ;1 and
von (X,S) such that u(A) = v(A) forall A € Aand pu(X) = v(X) < oo, but u # v.

Solution
Let X = 1[0,8], A = {[0,4],[2,6]}, S the o-algebra generated by A and the two
follwing measures on (X, S):

on = 51 + (55

VI(53+(57

where ¢; is the Dirac delta meaasure at ¢. We can easily prove that both p and v
are indeed measures on (X,S) (it will be proved in the following exercise). First,
notice that

p(0,4]) = 61([0,4]) + 65([0,4)) =1+ 0=1

v([0,4]) = 05(]0,4]) + 67([0,4]) =1+0=1
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and
p([2,6]) = 01([2,6]) +05([2,6]) =0+ 1 =1
v([2,6]) = 05([2,6]) + 6([2,6]) =1+ 0 =1
which implies that p(A) = v(A) for all A € A. Moreover,
p(X)=0(X)+0(X)=1+1=2

V(X)=03(X)+07(X)=14+1=2
so u(X) = v(X) < co. Consider now the set [2,4] = [0,4] N [2,6] € S:
p((2,4]) = 01([2,4]) +05([2,4]) =0+ 0=0
v([2,4]) = 65(2,4]) + 07([2,4]) =1+ 0=1

so i # v. Therefore, X, S, A, p and v satisfy all the desired properties.

Exercise 9

Suppose p and v are measures on a measurable space (X,S). Prove that p+ v is a
measure on (X, S). [Here, 1+ v is the usual sum of two functions: if £ € S, then
(b +v)(E) = p(E) +v(E)]

Solution

We only have two properties to prove, that the empty set is mapped to zero and the
countable additivity. First,

(p+v)(2)=w@)+v(@)=0+0=0

Moreover, if {E;}; is a countable collection of pairwise disjoint sets in S, then

(v (UE) _M(UE)H(UE)

+Z

Therefore, 1 + v is a measure on (X,S).
Exercise 10

Give an example of a measure space (X, S, 1) and a decreasing sequence Ey D Fy D
.. of sets in S such that

Ju (ﬂ Ek) 7# lim 1(Ek).
k=1
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Solution

Let X = R, § = 2R and p be the counting measure on (R,2®). Consider the
sequence of sets defined by Ej = [k, o0) for all k € Z*. Notice that for all k € ZT,
the set Ej, is infinite so it has infinite measure. Since it holds for all & € Z™, then

lim p(Ey) =
k—o0

Moreover, since N2, F), = &, then

(7e)-

7 (ﬂ Ek:) # lim pu(Ey)

k=1

Therefore,

Exercise 11
Suppose (X, S, i) is a measure space and C, D, E € § are such that

u(CND)<oo,u(CNE)<oo, and p(DNE) < 0o

Find an prove a formula for 4(C'U DU E) in terms of u(C), u(D), p(E), p(C'N D),
w(CNE), W(DNE),and pf(CNDNE).

Solution
First, by 2.61, since u(D N E) < oo, then

w(DUE) = p(D)+ p(E) — (DN E) (1)
Moreover, by 2.61, since u(CN DN E) < u(D N E) < oo (by monotonicity), then
p((CNDYU(CNE)=wCND)+u(CNE)—pu(CNDNE) (2)

Lastly, combining (1) and (2) and applying 2.61 with the fact that p((CND)U(CN
E)) <u(CND)+pu(CNE)< oo gives us

wWCUDUE)=u(CU(DUE))
(DUE) —u(CN(DUE))

1
W(DUE) - u((CND)U(CNE))
"
N

C

I
IS

(C
(C
(
(C) + u(D) + W(E) — p(D N E)

— [u D)+ pu(CNE)—puCnDNE)]

w(C) + u(D) + (E) — p(D N E)
—pu(CND)—pu(CNE)+u(CNDNE)

)+
)+
)+
(C

which is a satsfying formula for what was asked.
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Exercise 12

Suppose X is a set and S is the o-algebra of all subsets E of X such that E' is count-
able or X \ F is countable. Give a complete description of the set of all measures
on (X,S).

Solution
In this proof, the goal will be to show that the measures on (X, S) are precisely the
functions of the form

(E) = E:EGE w(x) if F is countable
: e+ > epw(x) if E is uncountable

where a € [0,00] and w : X — [0,00] is a function. More precisely, the goal is to
show that any measure on (X,S) is of this form and that any function of this form
is a measure on (X,S).

e let u: S — [0,00] be a measure on (X,S). Define w : X — [0,00] by
w : x — p({x}). This function is well-defined since all singletons are in S
since they are countable. It follows that for all countable sets E' = {eq, es, ...},

p(E) = > l{e)) = 3 wia)

zel

Now, suppose that ) _pw(z) = oo, then define o = oo which makes the
following equation true

pE) = a+ > u{e) = 3 wi)

zeE

for all uncountable set £ € S. In that case, we have shown that u is of the
desired form.
Suppose now that there is an uncountable set Ey € S such that ), w(z) <
00, define

a=u(Ey) — Z w(z) >0

€ ky

[Notice that « is positive since j(Ep) is an upper bound for the set {d """ | w(z;) :
L1, Ty € Eo} and that Y-, w(w) = sup{>_, w(z;) : x1,...,x, € Ep}.]
Let’s show that p(E) = a + Y .pw(x) for all uncountable sets £ € S. If
> wepW(x) = 0o, then

w(E) :oo:oH—Zw(x)
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If > cpw(z) < oo, then

pB) = n(Ey) = > w(x)+ Y wiz)

r€FE)\E x€E\Ep

—uE) = S w@ - 3 w@+ Y @+ 3w
z€FEQ\E zeENEy z€ENEy TzE€EFE\Ey

= (B~ 3 w(e) + Y wle)

=+ Z w(x)

zeE
which shows that in any case, u is of the desired form.

e Consider now a function p: S — [0, 00| such that

(E) = erE w(x) if F is countable
: e+ > sepw(z) if E is uncountable

where a € [0,00] and w : X — [0,00] is a function. Let’s prove that p is a
measure on (X,S). First,

pl@) = Y w(z) =0

reDd

Now, let {E;}; be a countable pairwise disjoint collection of sets in S. Since
they are disjoint, then there is at most one uncountable E;. Otherwise, if
E; and E;, are both uncountable, then F;, is contained in the complement
of E;, which implies that Ej is also uncountable. A contradiction with the
definition of §. Thus, there is at most one uncountable E;. If none of the E;’s
are uncountable, then

u(UEl): Z w(x)

oo o0
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If (wlog) E; is uncountable, then

i <UEZ> =a+ Z w(x)

IGU,?;IEZ'

:a+2w(:1:)+ Z w(x)

zeEn €U, E;

= u(Er) + D) wleiy)

i=2 j=1

= pu(Ey) + Z p(E;)

= Z 1(E)
i=1
Therefore, p is a measure on (X,S).

Therefore, we have a complete description of the measures on the measurable space

(X,S).
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2D Lebesgue Measure

Exercise 1

(a) Show that the set consisting of those numbers in (0,1) that have a decimal
expansion containing one hundred consecutive 4s is a Borel subset of R.

(b) What is the Lebesgue measure of the set in part (a)?

Solution

(a) First, define S to be the set consisting of the numbers in (0,1) that have a
decimal expansion containing one hundred consecutive 4s. The central idea of
this proof is to notice that for a given x € S, there must be at least one part
of the decimals that contains a hundred consecutive 4s, let’s focus on the first
time that we find a hundred of consecutive 4s in the decimals, then we must
be able to write

x = 0.a;y...a,44...44b1bs...

where A = a;...a,, € Z™" is an integer that doesn’t contain a hundred consec-
utive 4s and with a,, # 4, and B = 0.b1bgbs... is an arbitrary number in [0, 1].
In other words, there exists a n € Z™ such that

z = 10" 10010104 4 44,44 + B)

If we denote by F' the integer composed of a hundred consecutive 4s, then we
get
T = 10—(n+100)(10100A + F—|— B)

Hence,
z € 10~ 0010104 + F 4 [0, 1])

For a given n € Z™, let’s denote by A, the set of integers between 0 and
10"t — 1 (i.e., the set of integers with n digits) such that the elements don’t
contain a hundred consecutive 4s and where the digit representing the unit is
not a 4. Then, by our previous observation, we have

v € | J 10700010104, + F + [0, 1))

n=1

In fact, it is easy to see that

S =J1070H1(10'4, + F 4 [0,1))

n=1

In this form, it will be actually easier to prove that S is a Borel set and find
its Lebesgue measure.
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2E  Convergence of Measurable Functions
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