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Preface

The goal of this document is to share my personal solutions to the exercises in
Measure, Integration & Real Analysis by Sheldon Axler during my reading.
What results will I assume and what results am I going to prove in this document?
Most of the time, I will try to state precisely some results that I am going to
use without proof. More generaly, I will assume that the reader of this document
is already familiar with classical analysis such as the results that can be found
in the �rst chapters of Understanding Analysis by Stephen Abbott or any �rst
class introduction to analysis. For example, I will use without proof the following
properties of the in�mimum and supremum:

1. sup(A+B) = sup{a+ b : a ∈ A, b ∈ B} = supA+ supB

2. inf(A+B) = inf{a+ b : a ∈ A, b ∈ B} = inf A+ inf B

3. supA ≤ supB if A ⊂ B

4. inf A ≥ inf B if A ⊂ B

5. − supA = inf(−A)

where A and B are arbitrary bounded subsets of R.
As a disclaimer, the solutions are not unique and there will probably be better
or more optimized solutions than mine. Feel free to correct me or ask me anything
about the content of this document at the following address : samy.lahloukamal@mcgill.ca
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Chapter 1

Riemann Integration

1A Review : Riemann Integral

Exercise 1

Suppose f : [a, b] → R is a bounded function such that

L(f, P, [a, b]) = U(f, P, [a, b])

for some partition P of [a, b]. Prove that f is a constant function on [a, b].

Solution

Let's prove this on the number of subintervals of [a, b] of the partition P = {x0 <
x1 < ... < xn}. For our base case, let a < b ∈ R, f : [a, b] → R be an arbitrary
bounded function and P = {a, b} be the trivial partition. Suppose that

L(f, P, [a, b]) = U(f, P, [a, b])

Notice that it is equivalent to
inf
[a,b]

f = sup
[a,b]

f

If we let c := sup[a,b] f , then for all x ∈ [a, b], we have

c = inf
[a,b]

f ≤ f(x) ≤ sup
[a,b]

f = c

Hence, f ≡ c on [a, b] which proves the base case.
For the inductive step, suppose that there is a natural number k such that for all
a < b ∈ R and for all bounded f : [a, b] → R, then f is constant on [a, b] whenever
L(f, P, [a, b]) = U(f, P, [a, b]) where P is a partition splitting [a, b] into k subinter-
vals. Let a < b ∈ R be real numbers, f be an arbitrary bounded function on [a, b]
and P = {a = x0 < x1 < ... < xk+1 = b} be an arbitrary partition splitting [a, b]
into k+1 subintervals. Suppose that L(f, P, [a, b]) = U(f, P, [a, b]) holds. Let's show
that f is constant on [a, b].
First, consider the functions f1 := f |[a,xk] and f2 := f |[xk,b] and the partitions
P1 := {a = x0 < x1 < ... < xk} and P2 := {xk < xk+1 = b} partitioning [a, xk] and
[xk, b] respectiviely. Notice that L(f, P, [a, b]) = U(f, P, [a, b]) is actually equivalent
to L(f1, P1, [a, xk]) = U(f1, P1, [a, xk]) and L(f2, P2, [xk, b]) = U(f2, P2, [xk, b]).
It follows by our induction hypothesis that there exist constants c1 and c2 in R such
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CHAPTER 1. RIEMANN INTEGRATION 4

that f1 ≡ c1 and f2 ≡ c2 on there respetive domains. By de�nition of f1 and f2, we
get that f(x) = c1 for all x ∈ [a, xk] and f(x) = c2 for all x ∈ [xk, b]. By plugging-in
x = xk, we get that c1 = c2. It follows that f is constant on [a, b].

Exercise 2

Suppose a ≤ s < t ≤ b. De�ne f : [a, b] → R by

f(x) =

{
1 if s < x < t,

0 otherwise

Prove that f is Riemann integrable on [a, b] and that
∫ b

a
f = t− s.

Solution

Let ϵ > 0 and consider the partition Pϵ = {a < t− ϵ
2
< t+ ϵ

2
< s− ϵ

2
< s+ ϵ

2
< b}. To

make sure that Pϵ is well de�ned, take ϵ small enough so that a < t− ϵ
2
, t+ ϵ

2
< s− ϵ

2

and s+ ϵ
2
< b, i.e., consider ϵ to be stricly smaller than min(2(t−a), s− t, 2(b−s)).

Hence:

U(f, [a, b]) ≤ U(f, Pϵ, [a, b])

= (t− ϵ

2
− a) sup

[a,t− ϵ
2
]

f + (t+
ϵ

2
− t+

ϵ

2
) sup
[t− ϵ

2
,t+ ϵ

2
]

f

+ (s− ϵ

2
− t− ϵ

2
) sup
[t+ ϵ

2
,s− ϵ

2
]

f + (s+
ϵ

2
− s+

ϵ

2
) sup
[s− ϵ

2
,s+ ϵ

2
]

f

+ (b− s− ϵ

2
) sup
[s+ ϵ

2
,b]

f

= (t− ϵ

2
− a) · 0 + ϵ · 1 + (s− t− ϵ) · 1 + ϵ · 1 + (b− s− ϵ

2
) · 0

= s− t+ ϵ

But U(f, [a, b]) don't depend on ϵ so it follows that U(f, [a, b]) ≤ s − t. Similarly,
by construction of Pϵ, we can prove that L(f, [a, b]) ≥ s− t which gives us

s− t ≤ L(f, [a, b]) ≤ U(f, [a, b]) ≤ s− t

which gives us
U(f, [a, b]) = L(f, [a, b]) = s− t

Therefore, f is Riemann integrable and
∫ b

a
f = s− t.

Exercise 3

Suppose f : [a, b] → R is a bounded function. Prove that f is Riemann integrable
if and only if for each ϵ > 0, there exists a partition P of [a, b] such that

U(f, P, [a, b])− L(f, P, [a, b]) < ϵ

Solution

( =⇒ ) Suppose that f is Riemann integrable, then by de�nition, U(f, [a, b]) =
L(f, [a, b]). Let ϵ > 0, then by properties of the in�mimum and the supremum,
there exist partitions P1 and P2 of [a, b] such that

U(f, P1, [a, b]) < U(f, [a, b]) +
ϵ

2



CHAPTER 1. RIEMANN INTEGRATION 5

and
L(f, [a, b])− ϵ

2
< L(f, P2, [a, b])

consider P = P1 ∪ P2, then:

U(f, P, [a, b])− L(f, P, [a, b]) ≤ U(f, P1, [a, b])− L(f, P2, [a, b])

< U(f, [a, b]) +
ϵ

2
− L(f, [a, b]) +

ϵ

2
= ϵ

which proves the �rst direction of the equivalence.
( ⇐= ) Suppose that for all ϵ, there exists a partition P of [a, b] such that

U(f, P, [a, b])− L(f, P, [a, b]) < ϵ

Then, since for all partitions P of [a, b] we have U(f, [a, b]) ≤ U(f, P, [a, b]) and
L(f, P, [a, b]) ≤ L(f, [a, b]), then it follows that for all ϵ, we have

U(f, [a, b])− L(f, [a, b]) ≤ U(f, P, [a, b])− L(f, P, [a, b]) < ϵ

for some partition P by our assumption. Since it holds for all ϵ > 0 and since
U(f, [a, b])− L(f, [a, b]) is positive, then it follows that U(f, [a, b]) = L(f, [a, b]). By
de�nition, this means that f is Riemann integrable.

Exercise 4

Suppose, f, g : [a, b] → R are Riemann integrable. Prove that f + g is Riemann
integrable on [a, b] and ∫ b

a

(f + g) =

∫ b

a

f +

∫ b

a

g

Solution

First, consider the following properties of the upper and lower Riemann sums tat
we will prove as follows

sup
[xi,xi+1]

(f + g) = sup{f(x) + g(x) : x ∈ [xi, xi+1]}

≤ sup{f(x) + g(y) : x, y ∈ [xi, xi+1]}
= sup({f(x) : x ∈ [xi, xi+1]}+ {g(x) : x ∈ [xi, xi+1]})
= sup{f(x) : x ∈ [xi, xi+1]}+ sup{g(x) : x ∈ [xi, xi+1]}
= sup

[xi,xi+1]

f + sup
[xi,xi+1]

g

where [xi, xi+1] is an arbitrary closed interval inside [a, b]. Similarly, we also have
the following property for the in�nimum:

inf
[xi,xi+1]

(f + g) ≥ inf
[xi,xi+1]

f + inf
[xi,xi+1]

g
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Thus, given a partition P of [a, b], we have

U(f + g, P, [a, b]) =
n∑

i=1

(xi+1 − xi) sup
[xi,xi+1]

(f + g)

≤
n∑

i=1

(xi+1 − xi)( sup
[xi,xi+1]

f + sup
[xi,xi+1]

g)

=
n∑

i=1

(xi+1 − xi) sup
[xi,xi+1]

f +
n∑

i=1

(xi+1 − xi) sup
[xi,xi+1]

g

= U(f, P, [a, b]) + U(g, P, [a, b])

and similarly:

L(f + g, P, [a, b]) ≥ L(f, P, [a, b]) + L(g, P, [a, b])

These are the main inequalities we will use to prove the additivity of the Riemann
integral.
Let's now prove that f + g is Riemann integrable on [a, b] using the criterion proved
in the previous exercise. Let ϵ > 0, then by the criterion, there exist partitions Pf

and Pg of [a, b] such that

U(f, Pf , [a, b])− L(f, Pf , [a, b]) <
ϵ

2

U(g, Pg, [a, b])− L(g, Pg, [a, b]) <
ϵ

2

Consider now P to be the merging of Pf and Pg, i.e., let P = Pf ∪ Pg, then we get

U(f, P, [a, b])− L(f, P, [a, b]) <
ϵ

2

U(g, P, [a, b])− L(g, P, [a, b]) <
ϵ

2

Thus, by the previous inequalities:

U(f + g, P, [a, b])− L(f + g, P, [a, b]) ≤ U(f, P, [a, b]) + U(g, P, [a, b])

− L(f, P, [a, b])− L(g, P, [a, b])

= [U(f, P, [a, b])− L(f, P, [a, b])]

+ [U(g, P, [a, b])− L(g, P, [a, b])]

<
ϵ

2
+

ϵ

2
= ϵ

which proves the Riemann integrability of f + g.
Now, let's proves equality between

∫ b

a
(f + g) and

∫ b

a
f +

∫ b

a
g. To do so, let ϵ > 0,

then there exist partitions P1 and P2 of [a, b] satisfying

U(f, [a, b]) +
ϵ

2
> U(f, P1, [a, b])

and
U(g, [a, b]) +

ϵ

2
> U(g, P2, [a, b])
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If we consider P = P1 ∪ P2, we get∫ b

a

(f + g) = U(f + g, [a, b])

≤ U(f + g, P, [a, b])

≤ U(f, P, [a, b]) + U(g, P, [a, b])

≤ U(f, P1, [a, b]) + U(g, P2, [a, b])

< U(f, [a, b]) +
ϵ

2
+ U(g, [a, b]) +

ϵ

2

=

∫ b

a

f +

∫ b

a

g + ϵ

But ϵ is arbitrary and nothing depends on it so by letting ϵ → 0, we get∫ b

a

(f + g) ≤
∫ b

a

f +

∫ b

a

g (1)

For the reverse inequality, again, let ϵ > 0, then there are paritions P1 and P2 of
[a, b] satisfying

L(f, [a, b]) < L(f, P1, [a, b]) +
ϵ

2
and

L(g, [a, b]) < L(g, P2, [a, b]) +
ϵ

2
Thus, by letting P = P1 ∪ P2, we get∫ b

a

f +

∫ b

a

g = L(f, [a, b]) + L(g, [a, b])

< L(f, P1, [a, b]) +
ϵ

2
+ L(g, P2, [a, b]) +

ϵ

2
= L(f, P, [a, b]) + L(g, P, [a, b]) + ϵ

≤ L(f + g, P, [a, b]) + ϵ

≤ L(f + g, [a, b]) + ϵ

=

∫ b

a

(f + g) + ϵ

Letting ϵ → 0 gives us ∫ b

a

f +

∫ b

a

g ≤
∫ b

a

(f + g) (2)

Therefore, combining (1) and (2) gives us∫ b

a

(f + g) =

∫ b

a

f +

∫ b

a

g

Exercise 5

Suppose f : [a, b] → R is Riemann integrable. Prove that the function −f is
Riemann integrable on [a, b] and∫ b

a

(−f) = −
∫ b

a

f
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Solution

First, notice that for any partition P of [a, b], we have

−U(f, P, [a, b]) = −
n∑

i=1

(xi+1 − xi) sup
[xi,xi+1]

f

=
n∑

i=1

(xi+1 − xi)

(
− sup

[xi,xi+1]

f

)

=
n∑

i=1

(xi+1 − xi) inf
[xi,xi+1]

(−f)

= L(−f, P, [a, b])

Similarly, we also have

−L(f, P, [a, b]) = U(−f, P, [a, b])

Therefore, we get that

f is Riemann integrable =⇒ U(f, [a, b]) = L(f, [a, b])

=⇒ −U(f, [a, b]) = −L(f, [a, b])

=⇒ − inf
P
{U(f, P, [a, b])} = − sup

P
{L(f, P, [a, b])}

=⇒ sup
P

{−U(f, P, [a, b])} = inf
P
{−L(f, P, [a, b])}

=⇒ sup
P

{L(−f, P, [a, b])} = inf
P
{U(−f, P, [a, b])}

=⇒ L(−f, [a, b]) = U(−f, [a, b])

=⇒ −f is Riemann integrable

Hence, by the previous exercise, we get∫ b

a

f +

∫ b

a

(−f) =

∫ b

a

(f + (−f)) =

∫ b

a

0 = 0

which directly implies ∫ b

a

(−f) = −
∫ b

a

f

Exercise 6

Suppose f : [a, b] → R is Riemann integrable. Suppose g : [a, b] → R is a function
such that g(x) = f(x) for all except �nitely many x ∈ [a, b]. Prove that g is Riemann
integrable on [a, b] and ∫ b

a

g =

∫ b

a

f

Solution

Let's prove this by induction on the number of the number of elements in the set
{x ∈ [a, b] : g(x) ̸= f(x)}. For the base case, let g : [a, b] → R be a function which
di�ers from f at exactly one point x0 ∈ [a, b]. Consider the function h = f−g de�ned
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on [a, b] and notice that h is zero everywhere except for x = x0. Now, consider the
following cases, if x0 ∈ (a, b), then to prove that h is Riemann integrable, let ϵ > 0,
de�ne ϵ0 = ϵ/4|h0| and consider the partition P = {a, x0 − ϵ0, x0 + ϵ0, b}. Then, we
get

U(f, P, [a, b])− L(f, P, [a, b]) =

(
sup

[a,x0−ϵ0]

f − inf
[a,x0−ϵ0]

f

)
(x0 − ϵ0 − a)

+

(
sup

[x0−ϵ0,x0+ϵ0]

f − inf
[x0−ϵ0,x0+ϵ0]

f

)
(x0 + ϵ0 − x0 + ϵ0)

+

(
sup

[x0+ϵ0,b]

f − inf
[x0+ϵ0,b]

f

)
(b− x0 − ϵ0)

= 0 · (x0 − ϵ0 − a) + 2|h(x0)|ϵ0 + 0 · (b− x0 − ϵ0)

= 2|h(x0)|
ϵ

4|h(x0)|
=

ϵ

2
< ϵ

Thus, by the criterion proved in exercise 3, h is Riemann integrable. Since g = f−h,
then g is Riemann integrable as well by exercises 4 and 5.
Now, suppose without loss of generality that h(x0) is positive, then L(f, P, [a, b]) = 0
for any partition P of [a, b]. Hence, if we rewrite the last inequality, we get that

U(f, P, [a, b]) < ϵ

for some partition P and for all ϵ > 0. Hence, for all ϵ > 0, there is a partition P
such that

0 = L(f, P, [a, b]) ≤ U(f, [a, b]) ≤ U(f, P, [a, b]) < ϵ

It follows that ∫ b

a

h = U(f, [a, b]) = 0

by letting ϵ → 0. Thus, by exercise 4 and 5, we get∫ b

a

f =

∫ b

a

(h+ g) =

∫ b

a

h+

∫ b

a

g =

∫ b

a

g

which proves the base case when x0 ∈ (a, b). When x0 ∈ {a, b}, the proof is the
same up to a small modi�cation of the partition P given ϵ > 0. If x0 = a, de�ne
P = {a, a+ ϵ

2|h(x0)| , b} and if x0 = b, de�ne P = {a, b− ϵ
2|h(x0)| , b}.

For the inductive hypothesis, suppose that there is a k ∈ Z+ such that any function
that di�ers from a Riemann integrable function f at precisely k points is still Rie-
mann integrable and has its integral to be equal to

∫ b

a
f . Now, let g : [a, b] → R be

an arbitrary function that di�ers from f at precisely k points x1, x2, ..., xk+1. From
this, consider the function g0 : [a, b] → R de�ned by

g0(x) =

{
f(x) x = xk+1

g(x) otherwise
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Notice that g0 di�ers from f at precisely k points. Hence, by the inductive hypoth-
esis, g0 is integrable and its integral is the same as f . Moreover, g di�ers from g0 at
precisely one point, hence, by the base case, since g0 is Riemann integrable, then g
is Riemann integrable as well and∫ b

a

g =

∫ b

a

g0 =

∫ b

a

f

which proves our claim by induction.

Exercise 7

Suppose f : [a, b] → R is a bounded function. For n ∈ Z+, let Pn denote the
partition that divides [a, b] into 2n intervals of equal size. Prove that

L(f, [a, b]) = lim
n→∞

L(f, Pn, [a, b]) and U(f, [a, b]) = lim
n→∞

U(f, Pn, [a, b])

Solution

Let's prove it for the lower Riemann integral. Since Pn+1 ⊂ Pn for all n ∈ Z+,
then {L(f, Pn, [a, b])}n is an increasing sequence that is bounded by L(f, [a, b]),
thus, it converges to its supremum. Hence, it su�ces to prove that L(f, [a, b]) =
supn L(f, Pn, [a, b]).
Let ϵ > 0, then by properties of the supremum, there exists a partition P = {a =
x0, ..., xm = b} of [a, b] that satis�es

L(f, P, [a, b]) > L(f, [a, b])− ϵ

2

Let k ∈ J1,m− 1K, then there are a dyadic numbers ak/2
nk and bk/2

nk that satis�es
the following properties. First, ak/2

nk is strictly between xk and xk minus half the
distance between xk and xk−1. Similarly, bk/2

nk is stricly between xk and xk plus
half the distance between xk and xk+1. This condition is made to ensure that

bk−1

2nk−1
<

ak
2nk

< xk <
bk
2nk

<
ak+1

2nk+1

Moreover, the dyadic numbers also satisfy

xk −
ak
2nk

<
ϵ

4M(m− 1)

and
bk
2nk

− xk <
ϵ

4M(m− 1)

It directly follows that
bk
2nk

− ak
2nk

<
ϵ

2M(m− 1)

From this, de�ne N to be the maximum of the nk's and notice that we can rewrite

ϵ

2
=

m−1∑
k=1

M
ϵ

2M(m− 1)
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Hence, combining this with the previous inequality gives us

ϵ

2
>

m−1∑
k=1

M

(
bk
2nk

− ak
2nk

)
But notice that right hand side is an upper bound for the lower Riemann sum
with the partition PN ∪ P where the subintervals are precisely the ones between
the dyadic approximations of the xi's. Hence, since we can split L(f, PN ∪ P, [a, b])
into two sums, one that iterates over the subintervals of PN that are not contained
between the dyadic approximations of some xi and another sum that iterates over
the subintervals of PN ∪ P that are contained between the dyadic approximations
of some xi, then we get the following upper bound:

L(f, PN , [a, b]) +
ϵ

2
> L(f, PN ∪ P, [a, b])

which implies

L(f, PN , [a, b]) +
ϵ

2
> L(f, PN ∪ P, [a, b])

≥ L(f, P, [a, b])

> L(f, [a, b])− ϵ

2

giving us
L(f, PN , [a, b]) > L(f, [a, b])− ϵ

Thus, the sequence {L(f, Pn, [a, b])}n gets arbitrarily close to L(f, [a, b]). But L(f, [a, b])
is an upper bound for this sequence. It follows that L(f, [a, b]) = supn L(f, Pn, [a, b]).
Therefore,

L(f, [a, b]) = lim
n→∞

L(f, Pn, [a, b])

The proof for the upper Riemann integral is the same up to some small readjust-
ments.

Exercise 8

Suppose f : [a, b] → R is Riemann integrable. Prove that∫ b

a

f = lim
n→∞

b− a

n

n∑
j=1

f

(
a+

j(b− a)

n

)
.

Solution

In this solution, for all n ∈ Z+, I will denote by Pn the partition of [a, b] that divides
the interval into n equaly spaced subintervals. Let's use the de�nition of the limit
for sequences to prove the claim.
Let ϵ > 0, then there exist partitions P (1) and P (2) of [a, b] satisfying

L(f, P (1), [a, b]) > L(f, [a, b])− ϵ

2

U(f, [a, b]) +
ϵ

2
> U(f, P (2), [a, b])
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If we consider the merging of the partitions P = P (1) ∪ P (2) = {a = x0, x1, ..., xm =
b}, then the previous inequalities still hold even if we replace P (1) and P (2) by P :

L(f, P, [a, b]) > L(f, [a, b])− ϵ

2

U(f, [a, b]) +
ϵ

2
> U(f, P, [a, b])

By the Archimedean Property in R, there is a N ∈ Z+ such that

1

N
<

1

b− a
· ϵ

4M(m− 1)

Moreover, to make the rest of the proof simpler, make N large enough so that
(b−a)/N is stricly less than the maximum size of the subintervals in P . Let n ≥ N ,
let's �rst prove that

L(f, P ∪ Pn, [a, b]) ≤ L(f, Pn, [a, b]) + 2M(m− 1)
b− a

n

To do so, since Pn is a partition of [a, b], then any xi is going to be in a subinterval
of Pn of the form [yi1 , yi2 ] where yi1 = a+ j b−a

n
and yi2 = yi1 +

b−a
n
:

yi1 ≤ xi ≤ yi2

By our assumption on N , there are no xj between yi1 and xi or xi and yi2 . Hence,
the lower Riemann sum corresponding to the partition P ∪Pn contains the following
terms:

(xi − yi1) inf
[yi1 ,xi]

f + (yi2 − xi) inf
[xi,yi2 ]

f

for all i ∈ J1,m− 2K. But notice that we can �nd the following upper bound:

(xi − yi1) inf
[yi1 ,xi]

f + (yi2 − xi) inf
[xi,yi2 ]

f ≤ (xi − yi1)M + (yi2 − xi)M

= M(yi2 − yi1)

= M
b− a

n

Summing over all i's gives us

m−1∑
i=1

[
(xi − yi1) inf

[yi1 ,xi]
f + (yi2 − xi) inf

[xi,yi2 ]
f

]
≤

m−1∑
i=1

M
b− a

n
= M(m− 1)

b− a

n

Thus, from the n + (m − 1) terms of the lower Riemann sum associated with the
partition P ∪ Pn, we can bound above 2(m − 1) of the terms by M(m − 1) b−a

n
.

What it means is that L(f, P ∪ Pn, [a, b]) can be bounded above by M(m − 1) b−a
n

plus L(f, Pn, [a, b]) without the m − 1 subintervals containing the xi's. But each
subinterval in L(f, Pn, [a, b]) is of the form inf [yj ,yj+1] f

b−a
n

so is greater than −M b−a
n
.
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Thus, if we denote by mk the in�mum of f on the kth subinterval of Pn, we get:

L(f, P ∪ Pn, [a, b]) ≤
n−(m−1)∑

i=1

[
mki

b− a

n

]
+M(m− 1)

b− a

n

=

n−(m−1)∑
i=1

[
mki

b− a

n

]
+

m−1∑
j=1

[
−M

b− a

n

]
+ 2M(m− 1)

b− a

n

≤
n−(m−1)∑

i=1

[
mki

b− a

n

]
+

m−1∑
j=1

[
mk′j

b− a

n

]
+ 2M(m− 1)

b− a

n

=
n∑

i=1

[
mk

b− a

n

]
+ 2M(m− 1)

b− a

n

= L(f, Pn, [a, b]) + 2M(m− 1)
b− a

n

which is the desired inequality. Similarly, we can prove an analoguous inequality for
the upper Riemann sum:

U(f, P ∪ Pn, [a, b]) ≥ U(f, Pn, [a, b])− 2M(m− 1)
b− a

n

From these inequalities, we get the following:

b− a

n

n∑
i=1

f

(
a+ i

b− a

n

)
+

ϵ

2
≥

n∑
i=1

[
mi

b− a

n

]
+ 2M(m− 1)

b− a

n

= L(f, Pn, [a, b]) + 2M(m− 1)
b− a

n
≥ L(f, P ∪ Pn, [a, b])

≥ L(f, P, [a, b])

> L(f, [a, b])− ϵ

2

which implies ∫ b

a

f − b− a

n

n∑
i=1

f

(
a+ i

b− a

n

)
< ϵ (1)

Similarly, with upper Riemann sums, we get

b− a

n

n∑
i=1

f

(
a+ i

b− a

n

)
−
∫ b

a

f < ϵ (2)

Combining (1) and (2) gives us∣∣∣∣∣b− a

n

n∑
i=1

f

(
a+ i

b− a

n

)
−
∫ b

a

f

∣∣∣∣∣ < ϵ

Therefore, by de�nition of the limit of a sequence, we have

lim
n→∞

b− a

n

n∑
i=1

f

(
a+ i

b− a

n

)
=

∫ b

a

f
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which proves our claim.

Exercise 9

Suppose f : [a, b] → R is Riemann integrable. Prove that if c, d ∈ R and a ≤ c <
d ≤ b, then f is Riemann integrable on [c, d].
[To say that f is Riemann integrable on [c, d] means that f with its domain restricted
to [c, d] is Riemann integrable.]

Solution

In this solution, we will denote by f |[c,d] the restriction of f to [c, d]. Let's prove this
using the criterion proven in exercise 3. Let ϵ > 0, then by Riemann integrability of
f , there exists a partition P such that

U(f, P, [a, b])− L(f, P, [a, b]) < ϵ

Consider now the partition P ′ = P ∪{c, d}, then the previous still holds if we replace
P by P ′ since P ′ is a re�nement of P :

U(f, P ′, [a, b])− L(f, P ′, [a, b]) < ϵ

If we write P ′ as {a = x0, x1, ..., xn = b}, then there must exist integers i < j ∈ J0, nK
such that xi = c and xj = d. De�ne now the partition P0 = {c = xi, xi+1, ..., xj = d}
and notice that

U(f |[c,d], P0, [c, d])−L(f |[c,d], P0, [c, d])

=

j−1∑
k=i

(
sup

[xi,xi+1]

f |[c,d] − inf
[xi,xi+1]

f |[c,d]

)
(xi+1 − xi)

=

j−1∑
k=i

(
sup

[xi,xi+1]

f − inf
[xi,xi+1]

f

)
(xi+1 − xi)

≤
n−1∑
k=1

(
sup

[xi,xi+1]

f − inf
[xi,xi+1]

f

)
(xi+1 − xi)

= U(f, P ′, [a, b])− L(f, P ′, [a, b])

< ϵ

which proves that f is Riemann integrable on [c, d].

Exercise 10

Suppose f : [a, b] → R is a bounded function and c ∈ (a, b). Prove that f is Riemann
integrable on [a, b] if and only if f is Riemann integrable on [a, c] and f is Riemann
integrable on [c, b]. Furthermore, prove that if these conditions hold, then∫ b

a

f =

∫ c

a

f +

∫ b

c

f.

Solution

Before proving this, let's show that

U(f, [a, b]) = U(f, [a, c]) + U(f, [c, d])
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and
L(f, [a, b]) = L(f, [a, c]) + L(f, [c, d])

hold. To do so, we will use properties of the supremum and in�mum. Let ϵ > 0,
then there exists a partition P of [a, b] such that U(f, P, [a, b]) < U(f, [a, b]) + ϵ.
But if we consider P ∪ {c} = {a = x0, ..., xj = c, ..., xn = b, } instead of P , we can
split it into two partitions P1 = {x0, ..., xj} and P2 = {xj, ..., xn} of [a, c] and [c, b]
respectively. Hence:

U(f, [a, b]) + ϵ > U(f, P, [a, b])

≥ U(f, P ∪ {c}, [a, b])

=
n∑

i=1

(xi − xi−1) inf
[xi−1,xi]

f

=

j∑
i=1

(xi − xi−1) inf
[xi−1,xi]

f +
n∑

i=j+1

(xi − xi−1) inf
[xi−1,xi]

f

= U(f, P1, [a, c]) + U(f, P2, [c, b])

≥ U(f, [a, c]) + U(f, [c, b])

In short:
U(f, [a, c]) + U(f, [c, b]) ≤ U(f, [a, b]) + ϵ

But nothing here depends on ϵ so if just take ϵ → 0, we get

U(f, [a, c]) + U(f, [c, b]) ≤ U(f, [a, b])

Similarly, for any ϵ > 0, there exist partitions P1 and P2 of [a, c] and [c, b] respectively
such that U(f, P1, [a, c]) < U(f, [a, c])+ ϵ

2
and U(f, P2, [c, b]) < U(f, [c, b])+ ϵ

2
. Hence,

if we consider the partition P = P1 ∪ P2 = {x0, ..., xj = c, ..., xn} of [a, b], we get

U(f, [a, c]) + U(f, [c, b]) + ϵ > U(f, P1, [a, c]) + U(f, P2, [c, b])

=

j∑
i=1

(xi − xi−1) inf
[xi−1,xi]

f +
n∑

i=j+1

(xi − xi−1) inf
[xi−1,xi]

f

=
n∑

i=1

(xi − xi−1) inf
[xi−1,xi]

f

= U(f, P, [a, b])

≥ U(f, [a, b])

In short:
U(f, [a, b]) ≤ U(f, [a, c]) + U(f, [c, b]) + ϵ

But nothing here depends on ϵ so if just take ϵ → 0, we get

U(f, [a, b]) ≤ U(f, [a, c]) + U(f, [c, b])

It follows that
U(f, [a, b]) = U(f, [a, c]) + U(f, [c, b])

The proof for the lower Riemann integral is the same up to some small modi�cations.
Now that we proved these results, the rest will follow easily.
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For the equivalence that we need to prove, notice that the forward implication
follows from the previous exercise. For the reverse implication, suppose that f is
both Riemann integrable on [a, c] and [c, b], then by de�nition, we have

U(f, [a, c]) = L(f, [a, c])

and
U(f, [c, b]) = L(f, [c, b])

Adding the two equations gives us

U(f, [a, c]) + U(f, [c, b]) = L(f, [a, c]) + L(f, [c, b])

which is equivalent to
U(f, [a, b]) = L(f, [a, b])

Thus, f is Riemann integrable on [a, b].
Now, suppose that f is Riemann integrable on [a, b] and consequently, on [a, c] and
[c, b] as well, then:∫ b

a

f = U(f, [a, b]) = U(f, [a, c]) + U(f, [c, b]) =

∫ c

a

f +

∫ b

c

f

which proves our claim.

Exercise 11

Suppose f : [a, b] → R is Riemann integrable. De�ne F : [a, b] → R by

F (t) =

{
0 if t = a∫ t

a
f if t ∈ (a, b]

Prove that F is continuous on [a, b].

Solution

First, let m be the in�mum of f on [a, b] and M be the supremum of f on [a, b].
De�ne A to be the maximum between |m| and |M |. Now, let x ∈ [a, b] and (xn)n a
sequence in [a, b] that converges to x. For all n ∈ Z+, if x < xn we have

(xn − x) inf
[x,xn]

f ≤
∫ xn

x

f ≤ (xn − x) sup
[x,xn]

f

But by properties of the in�mum and supremum, we have

m(xn − x) ≤ (xn − x) inf
[a,b]

f ≤
∫ xn

x

f ≤ (xn − x) sup
[a,b]

f ≤ M(xn − x)

By de�nition of A, we have

−A(xn − x) ≤ m(xn − x) ≤
∫ xn

x

f ≤ M(xn − x) ≤ A(xn − x)

By the previous exercise and by de�nition of F , we have

F (xn)− F (x) =

∫ xn

a

f −
∫ x

a

f =

∫ xn

x

f



CHAPTER 1. RIEMANN INTEGRATION 17

Thus, plugging this in our inequality gives us

−A(xn − x) ≤ F (xn)− F (x) ≤ A(xn − x)

which is equivalent to
|F (xn)− F (x)| ≤ A(xn − x)

We assumed here that x < xn but we actually get the exact same result if x = xn or
if x > xn. Thus, since our last inequality holds for all n ∈ Z+, then by the Squeeze
Theorem:

lim
n→∞

F (xn) = F (x)

Since it holds for any sequence (xn)n converging to x, then by the Sequential Char-
acterization of Continuity, we get that F is continuous at x. Since it holds for all
x ∈ [a, b], then F is continuous on [a, b].

Exercise 12

Suppose f : [a, b] → R is Riemann integrable. Prove that |f | is Riemann integrable
and that ∣∣∣∣∫ b

a

f

∣∣∣∣ ≤ ∫ b

a

|f |.

Solution

First, let's prove that |f | is Riemann integrable. To do so, let's use the criterion
proven in exercise 3. Let ϵ > 0, then there exists a partition P = {x0, ..., xn} of [a, b]
such that

U(f, P, [a, b])− L(f, P, [a, b]) < ϵ

Let k ∈ J1, nK, de�ne

mk = inf
[xk−1,xk]

f Mk = sup
[xk−1,xk]

f

m′
k = inf

[xk−1,xk]
|f | M ′

k = sup
[xk−1,xk]

|f |

Let's show that M ′
k −m′

k ≤ Mk −mk.
If Mk ≤ 0 or mk ≥ 0, it is trivial. Suppose that MK ≥ 0 and mk ≤ 0, then for all
x ∈ [xk−1, xk]:

mk ≤ f(x) =⇒ mk ≤ f(x) +Mk

=⇒ mk −Mk ≤ f(x)

=⇒ −(Mk −mk) ≤ f(x)

and

f(x) ≤ Mk =⇒ f(x) +mk ≤ Mk

=⇒ f(x) ≤ Mk −mk

Putting the last two inequalities together gives us

−(Mk −mk) ≤ f(x) ≤ Mk −mk
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which is equivalent to
|f(x)| ≤ Mk −mk

But it holds for all x ∈ [xk−1, xk], so we get

M ′
k −m′

k ≤ M ′
k ≤ Mk −mk

which is the desired inequality.
Now, simply notice that

U(|f |, P, [a, b])− L(|f |, P, [a, b]) =
n∑

k=1

(M ′
k −m′

k)(xk − xk−1)

≤
n∑

k=1

(Mk −mk)(xk − xk−1)

= U(f, P, [a, b])− L(f, P, [a, b])

< ϵ

which proves that |f | is Riemann integrable as well.
To prove the triangle inequality, I �nd it easier to �rst prove that the Riemann
integral is monotone. To do so, let g1, g2 : [a, b] → R be two Riemann integrable
functions such that g1 ≤ g2, then if we de�ne h = g2 − g1 ≥ 0, by exercises 4 and 5,
we know that h is Riemann integrable as well and that∫ b

a

h =

∫ b

a

g2 −
∫ b

a

g1

Moreover, since h is positive on [a, b], then inf [a,b] h must be positive as well. It
follows that

0 ≤ (b− a) inf
[a,b]

h ≤
∫ b

a

h =

∫ b

a

g2 −
∫ b

a

g1

which directly implies ∫ b

a

g1 ≤
∫ b

a

g2

Hence, the Riemann integral is monotone. Therefore:

−|f | ≤ f ≤ |f |

implies by monotonicity and by exercise 5 that

−
∫ b

a

|f | ≤
∫ b

a

f ≤
∫ b

a

|f |

which is equivalent to ∣∣∣∣∫ b

a

f

∣∣∣∣ ≤ ∫ b

a

|f |

This proves the triangle inequality for the Riemann integral.

Exercise 13

Suppose f : [a, b] → R is an increasing function, meaning that c, d ∈ [a, b] with
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c < d implies f(c) ≤ f(d). Prove that f is Riemann integrable on [a, b].

Solution

Let's prove that f is Riemann integrable using the criterion proven in exercise 3.
Let ϵ > 0, then by the Archimedean property in R, there exists a n ∈ Z+ such that

(b− a)(f(b)− f(a))

n
< ϵ

Now, consider P = {x0, ..., xn} to be the the partition of [a, b] that divides the
interval into n subintervals of equal size. For all k ∈ J1, nK, if we de�ne

mk = inf
[xk−1,xk]

f Mk = sup
[xk−1,xk]

f

then we get

mk = f

(
a+ (k − 1)

b− a

n

)
Mk = f

(
a+ k

b− a

n

)
since f is increasing. Hence:

U(f, P, [a, b])−L(f, P, [a, b])

=
n∑

k=1

(Mk −mk)(xk − xk−1)

=
b− a

n

n∑
k=1

[
f

(
a+ k

b− a

n

)
− f

(
a+ (k − 1)

b− a

n

)]
=

b− a

n
(f(b)− f(a))

< ϵ

Therefore, f is Riemann integrable.

Exercise 14

Suppose f1, f2, ... is a sequence of Riemann integrable functions on [a, b] such that
f1, f2, ... converges uniformly on [a, b] to a function f : [a, b] → R. Prove that f is
Riemann integrable and ∫ b

a

f = lim
n→∞

∫ b

a

fn

Solution

First, let's show that f is Riemann integrable using the criterion proven in exercise
3. Let ϵ > 0, then by uniform convergence, there is a N ∈ Z+ such that

|f(x)− fN(x)| <
ϵ

4(b− a)

for all x ∈ [a, b]. Since fN is Riemann integrable, then there is a partition P =
{x0, ..., xn} such that

U(fN , P, [a, b])− L(fN , P, [a, b]) <
ϵ

2
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Let k ∈ J1, nK and de�ne

mk = inf
[xk−1,xk]

f Mk = sup
[xk−1,xk]

f

mN
k = inf

[xk−1,xk]
fN MN

k = sup
[xk−1,xk]

fN

Let x ∈ [xk−1, xk], then

|f(x)− fN(x)| <
ϵ

4(b− a)
=⇒ f(x)− fN(x) <

ϵ

4(b− a)

=⇒ f(x) <
ϵ

4(b− a)
+ fN(x)

=⇒ f(x) ≤ ϵ

4(b− a)
+MN

k

However, since the last inequality holds for all x ∈ [xk−1, xk] and only the left hand
side depends on x, then it follows that

Mk ≤
ϵ

4(b− a)
+MN

k (1)

Similarly,

|f(x)− fN(x)| <
ϵ

4(b− a)
=⇒ fN(x)− f(x) <

ϵ

4(b− a)

=⇒ fN(x) <
ϵ

4(b− a)
+ f(x)

=⇒ mN
k ≤ ϵ

4(b− a)
+ f(x)

=⇒ mN
k − ϵ

4(b− a)
≤ f(x)

However, since the last inequality holds for all x ∈ [xk−1, xk] and only the right hand
side depends on x, then it follows that

mN
k − ϵ

4(b− a)
≤ mk

which implies

−mk ≤ −mN
k +

ϵ

4(b− a)
(2)

Adding (1) and (2) together gives us

Mk −mk ≤ MN
k −mn

k +
ϵ

2(b− a)
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for all k ∈ J1, nK. Thus:

U(f, P, [a, b])−L(f, P, [a, b])

=
n∑

k=1

(Mk −mk)(xk − xk−1)

≤
n∑

k=1

[
(MN

k −mN
k ) +

ϵ

2(b− a)

]
(xk − xk−1)

=
n∑

k=1

(MN
k −mN

k )(xk − xk−1) +
ϵ

2(b− a)

n∑
k=1

(xk − xk−1)

= U(fN , P, [a, b])− L(fN , P, [a, b]) +
ϵ

2(b− a)
(b− a)

<
ϵ

2
+

ϵ

2
= ϵ

which proves that f is Riemann integrable.
Now, let's prove that

∫ b

a
fn →

∫ b

a
f as n → ∞ using the limit de�nition. Let ϵ > 0,

by uniform convergence, there is a N ∈ Z+ such that for all n ≥ N and x ∈ [a, b]

|f(x)− fn(x)| <
ϵ

2(b− a)

Thus, for any n ≥ N , using the triangle inequality (exercise 12),∣∣∣∣∫ b

a

f −
∫ b

a

fn

∣∣∣∣ = ∣∣∣∣∫ b

a

(f − fn)

∣∣∣∣
≤
∫ b

a

|f − fn|

≤
∫ b

a

ϵ

2(b− a)

=
ϵ

2(b− a)
(b− a)

=
ϵ

2
< ϵ

Therefore, by de�nition, ∫ b

a

f = lim
n→∞

∫ b

a

fn

which proves our claim.
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1B Riemann Integral Is Not Good Enough

Exercise 1

De�ne f : [0, 1] → R as follows:

f(a) =


0 if a is irrational,
1
n

if a is rational and n is the smallest positive integer

such that a = m
n
for some integerm.

Show that f is Riemann integrable and compute
∫ 1

0
f.

Solution

First, notice that f can be written as the limit of a sequence f0, f1, ... of functions
de�ned recursively by f0 ≡ 0 and fn+1 = fn except for the x's which can be written
as m

n+1
as an irreducible fraction. In that case, de�ne fn+1(x) to be

1
n+1

. It is to see
that the sequence of functions converges uniformly to f .
But notice that for all n ∈ Z+, the function fn only di�ers from the function zero
at �nitely many points. Thus, by exercise 6 of section 1A, fn is Riemann integrable
and its integral is equal to zero. Hence, by exercise 14 of section 1A, f is Riemann
integrable as well and ∫ 1

0

f = lim
n→∞

∫ 1

0

fn = 0

Exercise 2

Suppose that f : [a, b] → R is a bounded function. Prove that f is Riemann
integrable if and only if

L(−f, [a, b]) = −L(f, [a, b])

Solution We actually proved a very similar result in the solution of exercise 5.
Let's prove it again here for completeness. Our goal here will be to show that

L(−f, [a, b]) = −U(f, [a, b])

To do so, consider �rst an arbitrary partition P = {x0, ..., xn} of [a, b]. By properties
of the in�mum, we have

L(f, P, [a, b]) =
n∑

k=1

(xk − xk−1) inf
[xk−1,xk]

(−f)

= −
n∑

k=1

(xk − xk−1) sup
[xk−1,xk]

f

= −U(f, P, [a, b])

Hence, by properties of the supremum, we get

L(−f, [a, b]) = sup
P

L(−f, P, [a, b])

= sup
P

(−U(f, P, [a, b]))

= − inf
P

U(f, P, [a, b])

= −U(f, [a, b])
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Therefore, the equivalence can be proved easily as follows:

f is Riemann integrable ⇐⇒ U(f, [a, b]) = L(f, [a, b])

⇐⇒ −U(f, [a, b]) = −L(f, [a, b])

⇐⇒ L(−f, [a, b]) = −L(f, [a, b])

which is the desired equivalence.

Exercise 3

Suppose f, g : [a, b] → R are bounded functions. Prove that

L(f, [a, b]) + L(g, [a, b]) ≤ L(f + g, [a, b])

and
U(f + g, [a, b]) ≤ U(f, [a, b]) + U(g, [a, b]).

Solution

Let's prove it for the lower Riemann integral. To do so, let P1 and P2 be two arbitrary
partitions of [a, b] and consider the common re�nement P = P1 ∪ P2 = {x0, ..., xn},
then by properties of the in�mum:

L(f, P1, [a, b]) + L(g, P2, [a, b]) ≤ L(f, P, [a, b]) + L(g, P, [a, b])

=
n∑

i=1

(xi − xi−1) inf
[xi−1,xi]

f +
n∑

i=1

(xi − xi−1) inf
[xi−1,xi]

g

=
n∑

i=1

(xi − xi−1)

[
inf

[xi−1,xi]
f + inf

[xi−1,xi]
g

]
≤

n∑
i=1

(xi − xi−1) inf
[xi−1,xi]

(f + g)

= L(f + g, P, [a, b])

≤ L(f + g, [a, b])

If we �x P2 and rewrite the inequality as

L(f, P1, [a, b]) ≤ L(f + g, [a, b])− L(g, P2, [a, b])

Then taking the supremum over the P1's gives us

L(f, [a, b]) ≤ L(f + g, [a, b])− L(g, P2, [a, b])

Rewriting the inequality as

L(g, P2, [a, b]) ≤ L(f + g, [a, b])− L(f, [a, b])

and taking the supremum over the P2's gives us

L(g, [a, b]) ≤ L(f + g, [a, b])− L(f, [a, b])

which can be rewritten as

L(f, [a, b]) + L(g, [a, b]) ≤ L(f + g, [a, b])
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The proof for the upper Riemann integral is the same.

Exercise 4

Give an example of bounded functions f, g : [0, 1] → R such that

L(f, [0, 1]) + L(g, [0, 1]) < L(f + g, [0, 1])

and
U(f + g, [0, 1]) < U(f, [0, 1) + U(g, [0, 1]).

Solution

Let f and g be de�ned by

f(x) =

{
2 x ∈ Q ∩ [0, 1]

1 otherwise
g(x) =

{
1 x ∈ Q ∩ [0, 1]

2 otherwise

on [0, 1]. Then, L(f, [0, 1]) = L(g, [0, 1]) = 1 but L(f + g, [0, 1]) = 3 ̸= 2.
Similarly, U(f, [0, 1]) = U(g, [0, 1]) = 2 but U(f + g, [0, 1]) = 3 ̸= 4.

Exercise 5

Give an example of a sequence of continuous real-valued functions f1, f2, ... on [0, 1]
and a continuous real-valued function f on [0, 1] such that

f(x) = lim
k→∞

fk(x)

for each x ∈ [0, 1] but ∫ 1

0

f ̸= lim
k→∞

∫ 1

0

fk

Solution

Consider the functions f1, f2, ... de�ned by

fk(x) =


nx x ∈ [0, 1

n
]

2− nx x ∈ ( 1
n
, 2
n
]

0 x ∈ ( 2
n
, 1]

Then, for all k ∈ Z+:
∫ 1

0
fk = 1. However, the fk's converge pointwise to the

constant zero function on [0, 1] so
∫ 1

0
f = 0. It follows that

∫ 1

0
f and limk→∞

∫ 1

0
fk

are two di�erent quantities.
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Measures

2A Outer Measure on R

Exercise 1

Prove that if A and B are subsets of R and |B| = 0, then |A ∪B| = |A|.

Solution

By �nite subadditivity, we have

|A ∪B| ≤ |A|+ |B| = |A| (1)

Since A ⊂ A ∪B, then by monotonicity we have

|A| ≤ |A ∪B| (2)

Combining (1) and (2) gives us

|A ∪B| = |A|

Exercise 2

Suppose A ⊂ R and t ∈ R. Let tA = {ta : a ∈ A}. Prove that |tA| = |t||A|.
[Assume that 0 · ∞ is de�ned to be 0.]

Solution

First, notice that the statement is trivial for t = 0 so suppose t is nonzero. Secondly,
if we let I = (a, b) be an arbitrary open set with a < b ∈ R, then for t > 0:

ℓ(tI) = ℓ((ta, tb))

= tb− ta

= t(b− a)

= |t|ℓ(I)

and for t < 0:

ℓ(tI) = ℓ((tb, ta))

= ta− tb

= −t(b− a)

= |t|ℓ(I)

25
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Thus, it works for all t ̸= 0.
Now, let {I1, I2, ...} be an arbitrary collection of open intervals covering A. It is easy
to see that {tI1, tI2, ...} covers tA. Hence,

|tA| ≤
∞∑
n=1

ℓ(tIn) = |t|
∞∑
n=1

ℓ(In)

which is equivalent to
1

|t|
|tA| ≤

∞∑
n=1

ℓ(In)

But notice that {In}n was an arbitrary cover of A so taking the in�mum on both
sides over all covers {In}n of A gives us

|tA| ≤ |t||A| (1)

Proving the reverse inequality can actually be done using equation (1):

|A| =
∣∣∣∣1t (tA)

∣∣∣∣ ≤ ∣∣∣∣1t
∣∣∣∣ |tA|

which is equivalent to
|t||A| ≤ |tA| (2)

Combining (1) and (2) gives us

|tA| = |t||A|

which is the desired formula.

Exercise 3

Prove that if A,B ⊂ R and |A| < ∞, then |B \ A| ≥ |B| − |A|.

Solution

By subadditivity and monotonicity, since B ⊂ (B \ A) ∪ A, then

|B| ≤ |(B \ A) ∪ A| ≤ |B \ A|+ |A|

Since |A| < ∞, then
|(B \ A) ∪ A| ≥ |B| − |A|

which is the desired inequality.

Exercise 4

Suppose F is a subset of R with the property that every open cover of F has a �nite
subcover. Prove that F is closed and bounded.

Solution

Let's prove �rst that F is bounded. To do so, notice that {(k, k+2)}k∈Z is certainly
an open cover for F since ∪k∈Z(k, k + 2) = R. Hence, by our assumption on F ,
there exist �nitely many open intervals that covers F , i.e., F is a subset of a �nite
union of open intervals of the form (k, k+ 2) where k ∈ Z. Obviously, each of these
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intervals is bounded, hence a �nite union of such intervals is bounded a well. Thus,
F is a subset of a bounded set, so it must be bounded as well.
To show that F is closed, let's prove that F c is open. To prove it, let x be an arbitrary
element in F c and let's show the existence of an ϵ > 0 such that (x− ϵ, x+ ϵ) ⊂ F .
Consider the collection {(−∞, x− 1

n
) ∪ (x+ 1

n
,∞)}n∈Z+ . and notice that its union

is R \ {x}. Since x /∈ F , then F ⊂ R \ {x} which shows that the collection is
actually an open cover for F . Again, by our assumption on F , there exist �nitely
many natural numbers n1, n2, ..., nN such that

F ⊂
N⋃
i=1

(
−∞, x− 1

ni

)
∪
(
x+

1

ni

,∞
)

If we take M = max1≤i≤N(ni), then

F ⊂
(
−∞, x− 1

M

)
∪
(
x+

1

M
,∞
)

It follows that [
x− 1

M
,x+

1

M

]
⊂ F c

If we let ϵ = 1
M+1

, then we get

(x− ϵ, x+ ϵ) ⊂ F c

which proves that F c is open, and therefore that F is closed and bounded.

Exercise 5

Suppose A is a set of closed subsets of R such that ∩F∈AF = ∅. Prove that if A
contains at least one bounded set, then there exist n ∈ Z+ and F1, ..., Fn ∈ A such
that F1 ∩ ... ∩ Fn = ∅.

Solution

In this proof, I will use the following theorem proved in Exercise 3.3.6.(c) of Under-
standing Analysis : If {An}n is a countable collection of closed and bounded subsets
of R such that any �nite intersection is non empty, then ∩∞

n=1An is non empty as
well. As a corollary, if a countable intersection of closed and bounded sets is empty,
then there must be a �nite subcollection such that the intersection is empty as well.
Notice that the theorem that I just stated is simply a generalisation of the Nested
Interval Property.
Since we have no informations about the cardinality of A, the �rst step of this proof
will be to construct a countable collection of closed and bounded sets that will let
us apply the previous theorem in a useful way. To do so, recall that any open set
in R can be written as a countable union of open intervals. Moreover, any open
interval can be written as a countable union of open intervals with rational end-
points. Hence, any open set can be written as a countable union of open intervals
with rational coe�cients.
Consider now the set B = {(a, b)c : a, b ∈ Q} which is countable (a, b 7→ (a, b)c is
a bijection from Q2 to B and we know that Q2 is countable) and let F be a closed
set. By what we said previously, we have that

F c =
∞⋃
i=1

Bc
i
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for some {Bi}i ⊂ B. It follows that

F =
∞⋂
i=1

Bi

Since F was an arbitrary closed set, then any closed set can be written as a countable
intersection of elements in B. It follows that for every element F in A, there is a
coutable collection {I(F )

k }k such that F = ∩∞
k=1I

(F )
k .

From this, de�ne the collection I = ∪F∈A{I(F )
k }k which must be countable since it is

a subset of B which is countable. Since it is countable, to make the notation easier,
enumerate the elements in I as {I1, I2, ...}. Let's prove that ∩∞

n=1In ⊂ ∩F∈AF :

� Suppose that x ∈ ∩∞
n=1In and let F0 ∈ A, then F0 = ∩∞

k=1I
(F0)
k . Since x ∈

∩∞
n=1In, then x ∈ I

(F0)
k for all k ∈ Z+. It follows that

x ∈
∞⋂
k=1

I
(F0)
k = F0

Since F0 was an arbitrary element of A, then x ∈ ∩F∈AF . Since x was an
arbitrary element of ∩∞

n=1In, then

∞⋂
n=1

In ⊂
⋂
F∈A

F

Now if we suppose that ∩F∈AF = ∅, we get:
∞⋂
n=1

(F0 ∩ In) = F0 ∩
∞⋂
n=1

In = ∅

But notice that on the left hand side, we have a countable intersection of closed and
bounded sets. By the theorem stated at the very beginning, we must have a �nite
subcollection {F0 ∩ In1 , ..., F0 ∩ In,} such that

F0 ∩
m⋂
i=1

Ini
=

m⋂
i=1

(F0 ∩ Ini
) = ∅

Now, for each i ∈ J1,mK, since Ini
∈ I and by de�nition of I, there must be a set

Fi ∈ A such that Ini
∈ {I(Fi)

k }k which implies that

Fi =
∞⋂
k=1

I
(Fi)
k ⊂ Ini

Therefore:

F0 ∩ F1 ∩ ... ∩ Fm ⊂ F0 ∩
m⋂
i=1

Ini
= ∅

which proves our claim.
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Exercise 6

Prove that if a, b ∈ R and a < b, then

|(a, b)| = |[a, b)| = |(a, b]| = b− a.

Solution

Since the sets {a}, {b} and {a, b} are all of outer measure zero, then by exercise 1:

� |(a, b)| = |(a, b) ∪ {a, b}| = |[a, b]| = b− a

� |[a, b)| = |[a, b) ∪ {b}| = |[a, b]| = b− a

� |(a, b]| = |(a, b] ∪ {a}| = |[a, b]| = b− a

which proves our claim.

Exercise 7

Suppose a, b, c, d are real numbers with a < b and c < d. Prove that

|(a, b) ∪ (c, d)| = (b− a) + (d− c) if and only if (a, b) ∩ (c, d) = ∅.

Solution

First, suppose that (a, b) ∩ (c, d) = ∅, then we either have b < c or d < a. Assume
sithout loss of generality that b < c. By subadditivity, we have

|(a, b) ∪ (c, d)| ≤ |(a, b)|+ |(c, d)| = (b− a) + (d− c)

By exercise 3, we also have

|(a, b) ∪ (c, d)| = |(a, d) \ [b, c]|
≥ |(a, d)| − |[b, c]|
= (d− a)− (c− b)

= (b− a) + (d− c)

which shows that
|(a, b) ∪ (c, d)| = (b− a) + (d− c)

Suppose now that(a, b) ∩ (c, d) ̸= ∅, then we either have (a, b) ∪ (c, d) = (a, d) or
(a, b) ∪ (c, d) = (c, b). Assume without loss of generality that (a, b) ∪ (c, d) = (a, d),
then since we must have c < b, we get

|(a, b) ∪ (c, d)| = |(a, d)|
= d− a

< d− a+ b− c

= (b− a) + (d− c)

Therefore,
|(a, b) ∪ (c, d)| ≠ (b− a) + (d− c)
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which proves the equivalence between the two statements.

Exercise 8

Prove that if A ⊂ R and t > 0, then |A| = |A ∩ (−t, t)|+ |A ∩ (R \ (−t, t))|.

Solution

First, by subadditivity, we have

|A| = |A ∩ [(−t, t) ∪ (R \ (−t, t))]|
= |[A ∩ (−t, t)] ∪ [A ∩ (R \ (−t, t))]|
≤ |A ∩ (−t, t)|+ |A ∩ (R \ (−t, t))|

which gives us
|A| ≤ |A ∩ (−t, t)|+ |A ∩ (R \ (−t, t))| (1)

Let's now prove the reverse inequality. Let ϵ > 0, then by properties of the in-
�mimum, there exists a collection {Ik}k of open intervals that covers A and such
that

∞∑
k=1

ℓ(Ik) < |A|+ ϵ

2

Consider now the subcollection {I1,k}k of {Ik}k only composed of the intervals that
are fully contained in (−t, t). Similarly, de�ne the subcollection {I2,k}k of {Ik}k only
composed of the intervals that are fully contained in (−t, t)c. Obviously, these two
subcollection are disjoint but may not partition {Ik}k since there may be intervals
that are neither fully contained in (−t, t) nor in (−t, t)c. Concerning these sets,
let's de�ne the collections {I3,k}k, {I4,k}k and {I5,k}k that will contain the following
intervals. Let Ik = (ak, bk) ∈ {Ik}k.

� If both t and −t are contained in Ik, then by the previous de�nitions, we have
Ik ∈ {I1,k}k or Ik ∈ {I2,k}k.

� If Ik contains t but not −t, de�ne

I3,k =
(
ak, t+

ϵ

2k+2

)
I4,k =

(
t− ϵ

2k+2
, bk

)
� If Ik contains −t but not t, de�ne

I3,k =
(
ak,−t+

ϵ

2k+2

)
I4,k =

(
−t− ϵ

2k+2
, bk

)
� If both t and −t are contained in Ik, de�ne

I3,k = (−t, t)

I4,k =
(
ak,−t+

ϵ

2k+2

)
I5,k =

(
t− ϵ

2k+2
, bk

)
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Consider now the collections A0 = {I1,k}k∪{I3,k}k andB0 = {I2,k}k∪{I4,k}k∪{I5,k}k.
By construction, A0 is a collection of open intervals that covers A ∩ (−t, t) and B0

is a collection of open intervals that covers A ∩ (R \ (−t, t)). Moreover, even if the
collections A0 ∪B0 and {Ik}k, the construction was done so that the total length of
all the open intervals in A0∪B0 di�ers from the total length of all the open intervals
in {Ik}k by at most

∑∞
k=1 2

ϵ
2k+2 = ϵ

2
. This gives us

∑
I∈A0

ℓ(I) +
∑
I∈B0

ℓ(I) ≤
∞∑
k=1

ℓ(Ik) +
ϵ

2

which implies

|A ∩ (−t, t)|+ |A ∩ (R \ (−t, t))| ≤
∑
I∈A0

ℓ(I) +
∑
I∈B0

ℓ(I)

≤
∞∑
k=1

ℓ(Ik) +
ϵ

2

< |A|+ ϵ

2
+

ϵ

2
= |A|+ ϵ

Taking ϵ → 0 gives us

|A ∩ (−t, t)|+ |A ∩ (R \ (−t, t))| ≤ |A| (2)

Combining (1) and (2) gives us

|A| = |A ∩ (−t, t)|+ |A ∩ (R \ (−t, t))|

which is the desired equation.

Exercise 9

Prove that |A| = lim
t→∞

|A ∩ (−t, t)| for all A ⊂ R.

Solution

For this proof, let's �rst prove by induction that

|A ∩ (−n, n)| =
n∑

i=1

|A ∩ ((−i,−i+ 1] ∪ [i− 1, i))|

for all n ∈ Z+.

� (Base Case) For n = 1, it can be derived as follows

1∑
i=1

|A ∩ ((−i,−i+ 1] ∪ [i− 1, i))| = |A ∩ ((−1, 0] ∪ [0, 1))| = |A ∩ (−1, 1)|

� (Inductive Step) Suppose that there is a k ∈ Z+ such that

|A ∩ (−k, k)| =
k∑

i=1

|A ∩ ((−i,−i+ 1] ∪ [i− 1, i))|
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holds. Let's prove it for k+1. Notice that it su�ces to apply the result of the
previous exercise to the set A ∩ (−k − 1, k + 1) with t = k:

|A ∩ (−k − 1, k + 1)| = |(A ∩ (−k − 1, k + 1)) ∩ (R \ (−k, k))|
+ |A ∩ (−k − 1, k + 1) ∩ (−k, k)|

= |A ∩ ((−k − 1,−k] ∪ [k, k + 1))|+ |A ∩ (−k, k)|
= |A ∩ ((−k − 1,−k] ∪ [k, k + 1))|

+
k∑

i=1

|A ∩ ((−i,−i+ 1] ∪ [i− 1, i))|

=
k+1∑
i=1

|A ∩ ((−i,−i+ 1] ∪ [i− 1, i))|

which proves it k + 1.

Now that we proved the formula, let's prove our claim. By subadditivity,

|A| =

∣∣∣∣∣
∞⋃
i=1

A ∩ ((−i,−i+ 1] ∪ [i− 1, i))

∣∣∣∣∣
≤

∞∑
i=1

|A ∩ ((−i,−i+ 1] ∪ [i− 1, i))|

= lim
n→∞

n∑
i=1

|A ∩ ((−i,−i+ 1] ∪ [i− 1, i))|

= lim
n→∞

|A ∩ (−n, n)|

Moreover, by monotonicity, for all n ∈ Z+, we have

|A ∩ (−n, n)| ≤ |A|

It follows that
lim
n→∞

|A ∩ (−n, n)| ≤ |A|

Thus,
|A| = lim

n→∞
|A ∩ (−n, n)|

But we still need to prove it when the limit is taken over all positive real numbers t
and not just for positive integers. However, the desired result follows from the fact
that t 7→ |A ∩ (−t, t)| is increasing which shows that

lim
t→∞

|A ∩ (−t, t)| = sup
t≥0

|A ∩ (−t, t)| = sup
n∈Z+

|A ∩ (−n, n)| = lim
n→∞

|A ∩ (−n, n)|

Therefore,
|A| = lim

t→∞
|A ∩ (−t, t)|

Exercise 10

Prove that |[0, 1] \Q| = 1.
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Solution

Since Q ∩ [0, 1] is countable, and hence has measure zero, then by exercise 1 of this
section:

|[0, 1] \Q| = |([0, 1] \Q) ∪ (Q ∩ [0, 1])| = |[0, 1]| = 1

Exercise 11

Prove that if I1, I2, ... is a disjoint sequence of open intervals, then∣∣∣∣∣
∞⋃
k=1

Ik

∣∣∣∣∣ =
∞∑
k=1

ℓ(Ik).

Solution

Let's �rst prove it for �nitely many disjoint open intervals I1, ..., In where n ∈ Z+.
By subadditivity, we have ∣∣∣∣∣

n⋃
k=1

Ik

∣∣∣∣∣ ≤
n∑

k=1

ℓ(Ik)

Moreover, by if write Ik = (ak, bk) and suppose that they are ordered as follows

a1 < b1 < a2 < b2 < ... < an < bn

Then, by exercise 3, we have

|In ∪ (a1, bn−1)| = |(a1, bn) \ [bn−1, an]|
≥ |(a1, bn)| − |[bn−1, an]|
= bn − a1 − an + bn−1

= ℓ(In) + |(a1, bn−1)|

by induction, it follows that ∣∣∣∣∣
n⋃

k=1

Ik

∣∣∣∣∣ ≥
n∑

k=1

ℓ(Ik)

Thus, equality holds in the �nite case. Consider now the in�nite case with the
sequence I1, I2, ..., then again, by subadditivity:∣∣∣∣∣

∞⋃
k=1

Ik

∣∣∣∣∣ ≤
∞∑
k=1

ℓ(Ik)

However, notice that for all n ∈ Z+, using the �nite case, we have∣∣∣∣∣
∞⋃
k=1

Ik

∣∣∣∣∣ ≥
∣∣∣∣∣

n⋃
k=1

Ik

∣∣∣∣∣ =
n∑

k=1

ℓ(Ik)

Hence, taking n → ∞ gives us ∣∣∣∣∣
∞⋃
k=1

Ik

∣∣∣∣∣ ≥
∞∑
k=1

ℓ(Ik)
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which �nishes the proof.

Exercise 12

Suppose r1, r2, ... is a sequence that contains every rational number. Let

F = R \
∞⋃
k=1

(
rk −

1

2k
, rk +

1

2k

)
(a) Show that F is a closed subset of R.

(b) Prove that if I is an interval contained in F , then I contains at most one
element.

(c) Prove that |F | = ∞

Solution

(a) If we rewrite

F = R ∩
∞⋂
k=1

(
rk −

1

2k
, rk +

1

2k

)c

then we get that F is simply an intersection of closed sets. Hence, F is closed
as well.

(b) By de�nition, F contains no rationals. Let I be an interval contained in F .
Suppose that I has two distinct elements a and b such that a < b, then,
[a, b] ⊂ F . However, by the density of Q in R, there must be a rational r0 in
[a, b] which would imply that r0 ∈ F . A contradiction. Thus, I contains at
most one element.

(c) The proof is straightforward:

|F | =

∣∣∣∣∣R \
∞⋃
k=1

(
rk −

1

2k
, rk +

1

2k

)∣∣∣∣∣
≥ |R| −

∣∣∣∣∣
∞⋃
k=1

(
rk −

1

2k
, rk +

1

2k

)∣∣∣∣∣
≥ |R| −

∞∑
k=1

∣∣∣∣(rk − 1

2k
, rk +

1

2k

)∣∣∣∣
= |R| −

∞∑
k=1

2 · 1

2k

= ∞− 2

= ∞

Therefore, |F | = ∞.
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Exercise 13

Suppose ϵ > 0. Prove that there exists a subset F of [0, 1] such that F is closed,
every element in F is an irrational number, and |F | > 1− ϵ.

Solution

Since Q ∩ [0, 1] is countable, then it has measure zero. By the properties of the
in�mum, there is a cover {Ik}k of open intervals of Q ∩ [0, 1] that satis�es

∞∑
k=1

ℓ(Ik) < ϵ

Consider now the set F de�ned by

F = [0, 1] \
∞⋃
k=1

Ik

Then, F ⊂ [0, 1]. To show that F is closed, notice that we can write

F = [0, 1] ∩
∞⋂
k=1

Ick

which is an intersection of closed sets, hence, closed. To show that F contains
only rational numbers, notice that ∪∞

k=1Ik covers Q ∩ [0, 1], hence, contains all the
rationals in [0, 1]. It follows that [0, 1] \ ∪∞

k=1Ik contains no rationals. Finally:

|F | =

∣∣∣∣∣[0, 1] \
∞⋃
k=1

Ik

∣∣∣∣∣
≥ |[0, 1]| −

∣∣∣∣∣
∞⋃
k=1

Ik

∣∣∣∣∣
≥ 1−

∞∑
k=1

|Ik|

= 1−
∞∑
k=1

ℓ(Ik)

> 1− ϵ

which proves that F has all the required properties.

Exercise 14

Consider the following �gure, which is drawn accurately to scale.

[...]

(a) Show that the right triangle whose vertices are (0,0), (20, 0) and (20, 9) has
area 90.
[We have not de�ned area yet but just use the elementary formulas for the
areas of triangles and rectangles that you learned long ago.]
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(b) Show that the yellow (lower) right triangle has area 27.5.

(c) Show that the red rectangle has area 45.

(d) Show that the blue (upper) right triangle has area 18.

(e) Add the results of parts (b), (c), and (d), showing that the area of the colored
region is 90.5.

(f) Seeing the �gure above, most people expect parts (a) and (e) to have the same
result. Yet in part (a) we found area 90, and in part (e) we found area 90.5.
Explain why these results di�er. [You may be tempted to think that what we
have here is a two-dimensional example similar to the result about the nonad-
ditivity of outer measure (2.18). However, genuine examples of nonadditivity
require much more complicated sets than in this example.]

Solution

(a) Area = 20·9
2

= 90

(b) Areayellow = 11·5
2

= 27.5

(c) Areared = (20− 11) · 5 = 45

(d) Areablue =
(20−11)(9−5)

2
= 18

(e) Areayellow + Areared + Areablue = 27.5 + 45 + 18 = 90.5

(f) The big triangle composed of the three coloured shapes is actually not a tri-
angle at all. To verify this, if there was a triangle with vertices (0,0), (20, 0)
and (20, 9), then a quick calculation shows that it passes through the point
(11, 4.95) and not (11, 5).
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2B Measurable Spaces and Functions

Exercise 1

Show that S = {∪n∈K(n, n+ 1] : K ⊂ Z+} is a σ-algebra on R.

Solution

As most of the proofs showing that a collection is a σ-algebra, let's split this one
into three parts:

� (∅ ∈ S) Since ∅ ⊂ Z, then ∪n∈∅(n, n + 1] ∈ S. However, notice that
∪n∈∅(n, n+ 1] = ∅. It follows that ∅ ∈ S.

� (closed under complements) Let A ∈ S, then there exists a K0 ⊂ Z such
that A = ∪n∈K0(n, n + 1] Consider K1 = Z \ K0 and its associated element
B = ∪n∈K1(n, n+1] in S. Since A∩B = ∅ and A∪B = R, then B = R \A.
Hence, Ac ∈ S which proves that S is closed under complements.

� (closed under countable union) Let {Ai}i be a countable collection of elements
in S, then for all i ∈ Z+, there is a subset Ki of Z such that Ai = ∪n∈Ki

(n, n+
1]. Consider K = ∪∞

i=1Ki ⊂ Z and A = ∪n∈K(n, n + 1] ∈ S. By consruction,
A = ∪∞

i=1Ai ∈ S. Therefore, S is closed under countable union.

Therefore, S is a σ-algebra on R.

Exercise 2

Verify both bullet points in Example 2.28.

Solution

� Suppose X is a set and A is the set of subsets of X that consist of exactly one
element:

A = {{x} : x ∈ A}
De�ne S to be the smallest σ-algebra on X generated by A. Let's prove
that S is precisely the collection of subsets of X that are countable or co-
countable. To make it easier, denote by M the collection of subsets of X that
are countable or co-countable.
Hence, we need to prove that S = M. We already know from example 2.24
that M is a σ-algebra on X. Moreover, it is easy to see that A ⊂ M. It
follows that S ⊂ M.
To prove the reverse inclusion, let E ∈ M, then one of E or Ec is countable.
If E is countable, then we can simply write E as the countable union of the
singletons of its elements, hence, a countable union of elements in A ⊂ S.
This would imply that E ∈ S. Similarly, if Ec is countable, then with the
same argument, Ec ∈ S which also implies that E ∈ S. Thus, M ⊂ S. It
follows that S = M.

� Let A = {(0, 1), (0,∞)} and denote by S the smallest σ-algebra containing A.
De�ne the collection

E = {∅, (0, 1), (0,∞), (−∞, 0] ∪ [1,∞), (−∞, 0], [1,∞), (−∞, 1), R}

Let's show that S = E. First, let's prove that E is a σ-algebra:
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� (∅ ∈ E) By de�nition of E.

� (closed under complement)

* R \∅ = R ∈ E

* R \ (0, 1) = (−∞, 0] ∪ [1,∞) ∈ E

* R \ (0,∞) = (−∞, 0] ∈ E

* R \ ((−∞, 0] ∪ [1,∞)) = (0, 1) ∈ E

* R \ [1,∞) = (−∞, 1) ∈ E

* R \ (−∞, 0] = (0,∞) ∈ E

* R \ (−∞, 1) = [1,∞) ∈ E

* R \R = ∅ ∈ E

� (closed under countable union) Since E is �nite, then it su�ces to check
that E is closed under the regular union between two sets. To be faster,
I skipped the trivial unions that involve R or ∅.
* (0, 1) ∪ (0,∞) = (0,∞) ∈ E

* (0, 1) ∪ ((−∞, 0] ∪ [1,∞)) = R ∈ E

* (0, 1) ∪ [1,∞) = (0,∞) ∈ E

* (0, 1) ∪ (−∞, 0] = (−∞, 1) ∈ E

* (0, 1) ∪ (−∞, 1) = (−∞, 1) ∈ E

* (0,∞) ∪ ((−∞, 0] ∪ [1,∞)) = R ∈ E

* (0,∞) ∪ [1,∞) = (0,∞) ∈ E

* (0,∞) ∪ (−∞, 0] = R ∈ E

* (0,∞) ∪ (−∞, 1) = R ∈ E

* ((−∞, 0] ∪ [1,∞)) ∪ [1,∞) = ((−∞, 0] ∪ [1,∞)) ∈ E

* ((−∞, 0] ∪ [1,∞)) ∪ (−∞, 0] = ((−∞, 0] ∪ [1,∞)) ∈ E

* ((−∞, 0] ∪ [1,∞)) ∪ (−∞, 1) = R ∈ E

* [1,∞) ∪ (−∞, 0] = ((−∞, 0] ∪ [1,∞)) ∈ E

* [1,∞) ∪ (−∞, 1) = R ∈ E

* (−∞, 0] ∪ (−∞, 1) = (−∞, 1) ∈ E

Therefore, E is a σ-algebra on R that contains A. It follows that S ⊂ E. For
the reverse inclusion, let's prove that any element in E can be constructed
from elements in A using the operations of σ-algebras, i.e., complements and
unions:

� ∅ is in S because S is a σ-algebra.

� (0,1) is in S because it is in A.
� (0,∞) is in S because it is in A.
� (−∞, 0]∪ [1,∞) is in S because it is the complement of (0,1) which is in

S.
� [1,∞) is in S because it can be written as (0,∞) \ (0, 1) and we already
know that (0,∞) and (0, 1) are in S.

� (−∞, 0] is in S because it can be written as ((−∞, 0] ∪ [1,∞)) \ [1,∞)
and we already know that both sets are in S.
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� (−∞, 1) is in S because it is the complement of [1,∞) which is in S.
� R is in S because S is a σ-algebra.

Therefore, S = E.

Exercise 3

Suppose S is the smallest σ-algebra on R containing {(r, s] : r, s ∈ Q}. Prove that
S is the collection of Borel subsets of R.

Solution

To make things easier, let's denote by B the collection of Borel subsets of R. We
need to prove that S = B. First, notice that for all rationals r, s ∈ Q with r < s,
the set (r, s] ∈ B since it can be written as (r,∞) \ (s,∞) and both are open (so
Borel) sets. It follows that S ⊂ B.
For the reverse inclusion, let's show that S contains every open sets. Let's prove
�rst that S contains open interval Let (a, b) be an open interval with a < b ∈ R.
By density of Q in R, there exist two sequence {qn}n and {sn} of rationals that
satisfy the following properties : {qn}n is decreasing and converges to a, {sn}n is
increasing and converges to b. Since all of the terms are rationals, then (rn, sn] ∈ S
for all n ∈ Z+. But S is a σ-algebra so

(a, b) =
∞⋃
n=1

(rn, sn] ∈ S

Hence, S contains every open interval. Now, using the fact that any open set can
be written as a countable union of open intervals, it easily follows that S actually
contains every open set. Therefore, B ⊂ S since B is generated by the open sets so
S = B.

Exercise 4

Suppose S is the smallest σ-algebra on R containing {(r, n] : r ∈ Q, n ∈ Z+}. Prove
that S is the collection of Borel subsets of R.

Solution

For this proof, I will use the result of the previous exercise. Hence, de�ne E =
{(r, n] : r ∈ Q, n ∈ Z+}, E0 = {(r, s] : r, s ∈ Q} and consider S0 to be the smallest
σ-algebra generated by E0. Let's denote by B the collection of Borel subsets of R.
Obviously, since E ⊂ E0 ⊂ S0, then S ⊂ S0.
For the reverse inclusion, let's show that E0 ⊂ S. Let (r, s] ∈ E0 with r, s ∈ Q.
Notice that for all integers n ≥ r, (r, n] ∈ E ⊂ S, hence, taking their union gives us

(r,∞) =
⋃
n≥r

(r, n] ∈ S

Similarly, (s,∞) ∈ S for the same reasons. Hence, (r, s] = (r,∞) \ (s,∞) ∈ S. It
follows that E0 ⊂ S which implies that S0 ⊂ S. Therefore

S = S0 = B
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Exercise 5

Suppose S is the smallest σ-algebra on R containing {(r, r + 1) : r ∈ Q}. Prove
that S is the collection of Borel subsets of R.

Solution

Let E = {(r, r + 1) : r ∈ Q} and denote by B the collection of Borel subsets of R.
Moreover, let E0 = {(r, n] : r ∈ Q, n ∈ Z+} and de�ne S0 as the smallest σ-algebra
containing E0. By exercise 4, we know that

S0 = B

Let's show that S = B. Obviously, since every element in E is a Borel set, then
E ⊂ B which implies that S ⊂ B.
For the reverse inclusion, Let's show that E0 ⊂ S. Let (r, n] be an arbitrary element
of E0 with r ∈ Q and n ∈ Z+. By de�nition of E, we know that for all k ≥ 0, the
set (r + 1

2
k, r + 1

2
k + 1) ∈ E ⊂ S. Thus, since S is closed under countable unions,

(r,∞) =
∞⋃
k=1

(
r +

1

2
k, r +

1

2
k + 1

)
∈ S

Similarly, (n,∞) ∈ S for the same reasons. Hence, (r, s] = (r,∞) \ (n,∞) ∈ S. It
follows that E0 ⊂ S which implies B = S0 ⊂ S. Therefore, S = B.

Exercise 6

Suppose S is the smallest σ-algebra on R containing {[r,∞) : r ∈ Q}. Prove that
S is the collection of Borel subsets of R.

Solution

Let E = {[r,∞) : r ∈ Q} and denote by B the collection of Borel subsets of
R. Moreover, let E0 = {(r, s] : r, s ∈ Q} and de�ne S0 as the smallest σ-algebra
containing E0. By exercise 3, we know that

S0 = B

Let's show that S = B. Since every element of E is closed, then E ⊂ B (closed sets
are Borel sets). It follows that S ⊂ B.
For the reverse inclusion, let's prove that E0 ⊂ S. Let (r, s] be an arbitrary set in
E0 with r < s ∈ Q, then by de�nition of E, both [r + 1

n
,∞) and [s + 1

n
,∞) are

contained in E and hence in S. Since S is a σ-algebra, then

(r,∞) =
∞⋃
n=1

[
r +

1

n
,∞
)

∈ S

and

(s,∞) =
∞⋃
n=1

[
s+

1

n
,∞
)

∈ S

It follows that (r, s] = (r,∞)\(s,∞) ∈ S. Hence, E0 ⊂ S which implies B = S0 ⊂ S.
Therefore, S = B.
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Exercise 7

Prove that the collection of Borel subsets of R is translation invariant. More pre-
cisely, prove that if B ⊂ R is a Borel set and t ∈ R, then t+B is a Borel set.

Solution

Let B ⊂ R be a Borel set and t be an arbitrary real number. Let's show that t+B
is a Borel set. Consider the function f : R → R de�ned by x 7→ x − t. Since f
is continuous, then f is Borel measurable. It follows that f−1(B) is a Borel set.
However, notice that for all x ∈ R:

x ∈ f−1(B) ⇐⇒ f(x) ∈ B

⇐⇒ x− t ∈ B

⇐⇒ x ∈ t+B

Hence, t + B = f−1(B). Therefore, t + B is a Borel set which proves that the
collection of Borel sets is translation invariant.

Exercise 8

Prove that the collection of Borel subsets of R is dilation invariant. More precisely,
prove that if B ⊂ R is a Borel set and t ∈ R, then tB (which is de�ned to be
{tb : b ∈ B}) is a Borel set.

Solution

Let B ⊂ R be a Borel set and t be an arbitrary real number. Let's show that tB
is a Borel set. Notice that the case t = 0 is trivial since tB = {0} in that case and
{0} is a Borel set. Consider the function f : R → R de�ned by x 7→ 1

t
x. Since

f is continuous, then f is Borel measurable. It follows that f−1(B) is a Borel set.
However, notice that for all x ∈ R:

x ∈ f−1(B) ⇐⇒ f(x) ∈ B

⇐⇒ 1

t
x ∈ B

⇐⇒ x ∈ tB

Hence, tB = f−1(B). Therefore, tB is a Borel set which proves that the collection
of Borel sets is dilation invariant.

Exercise 9

Give an example of a measurable space (X,S) and a function f : X → R such that
|f | is S-measurable but f is not S-measurable.

Solution

Consider (X,S) = (R, {∅,R}) and the function f : X → R de�ned by

f(x) =

{
1 x ≥ 0

−1 x < 0

Notice that |f | = χR and hence S-measurable since R ∈ S. However,

f−1({1}) = [0,∞) /∈ S
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even if {1} is a Borel set. Therefore, |f | is S-measurable but not f .

Exercise 10

Show that the set of real numbers that have a decimal expansion with the digit 5
appearing in�nitely often is a Borel set.

Solution

This proof will have three steps but the idea is the following :

1. Construct the set of reals that contains no digit 5 in their decimal part in a
process similar to the construction of the Cantor set. By construction, show
that this set is a Borel set.

2. Construct, using the previous set, the set of reals with �nitely many 5's in
their decimal expansion. By construction, show that this set is a Borel set.

3. Simply take the complement of the previous set. It follows that the desired
set is Borel.

(Step 1) Let's construct the set of reals that contains no 5 in their decimal part.
Let's construct recursively a sequence of sets that converges to the desired set. To do
so, de�ne the Borel set M0 = R which simply represents the reals. De�ne M1 which
represents the set of reals that contains no 5 in their �rst decimal and M2 as the
set representing the reals with no digit 5 in their �rst two decimals. To generalize
this process, suppose that Mn is a Borel which represents the reals which contains
no 5 in their �rst n decimals, to construct Mn+1, simply remove from Mn the reals
with a 5 in their (n+ 1)st decimal. Notice that the set of of reals with a 5 in their
(n+ 1)st decimal can be written as follows : 1

10n+1 (10Z+ 5). Hence,

Mn+1 = Mn \
1

10n+1
(10Z+ 5)

By properties of σ-algebras and exercise 7 and 8, Mn+1 is also a Borel set. Thus, if
we de�ne

M =
∞⋂
n=0

Mn

by construction of the Mn's, we have that M is precisely the (Borel) set of reals that
contains no 5's in their decimal part (such reals can contain a 5 in their decimal
representation but only in the integer part).

(Step 2) To construct the set of reals with �nitely many 5's in their decimal expan-
sion, notice that if x ∈ R has �nitely many 5's in their decimal expansion, then
there is a natural number n such that 10nx has no 5's in its decimal part. From this
observation, we get that the set

N =
∞⋃
n=1

1

10n
M

is precisely the set of reals with �nitely 5's in their decimal expansion. Moreover,
by exercise 8 and by properties of σ-algebras, N is a Borel set.
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(Step 3) By construction, N c must be the set of reals with in�nitely many 5's in their
decimal expansion. Since the collection of Borel sets is closed under complements,
then N c is a Borel set. We could also have shown that it has outer measure 0 by
the construction on the interval [0, 1] and then extending to the reals but the proof
would have been longer.

Exercise 11

Suppose T is a σ-algebra on a set Y and X ∈ T . Let S = {E ∈ T : E ⊂ X}.

(a) Show that S = {F ∩X : F ∈ T }.

(b) Show that S is a σ-algebra on X.

Solution

(a) Let E ∈ S, then E ∈ T and E ⊂ X. It follows that E = E ∩X ∈ {F ∩X :
F ∈ T }. Hence, S ⊂ {F ∩ X : F ∈ T }. For the reverse inclusion, let
F ∩ X be an arbitrary element of {F ∩ X : F ∈ T }, then F ∈ T which
implies that F ∩ X ∈ T . Moreover, F ∩ X ⊂ X so F ∩ X ∈ S. Therefore,
S = {F ∩X : F ∈ T }.

(b) First, since ∅ ∈ T and ∅ ⊂ X, then ∅ ∈ S. Now, if E is an arbitrary element
of S, then its complement, X \ E is still in T and obviously is a subset of X.
Hence, Ec ∈ S. Thus, S is closed under complements. Suppose that {En}n
is a countable collection of elements in S, then they all are in T and all are
subsets of X. It follows that their union is still in T and still a subset of X.
Hence, their union is in S. Therefore, S is a σ-algebra.

Exercise 12

Suppose f : R → R is a function.

(a) For k ∈ Z+, let

Gk = {a ∈ R : there exists δ > 0 such that |f(b)− f(c)| < 1
k

for all b, c ∈ (a− δ, a+ δ)}.

Prove that Gk is an open subset of R for each k ∈ Z+.

(b) Prove that the set of points at which f is continuous equals ∩∞
k=1Gk.

(c) Conclude that the set of points at which f is continuous is a Borel set.

Solution

(a) Let k ∈ Z+ and let's prove that Gk is open by proving that every point is an
interior point of the set. Let x ∈ Gk, then by de�nition, there is a δ > 0 such
that

|f(y)− f(z)| < 1

k
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for all y, z ∈ (x − δ, x + δ). Let's show that (x − δ, x + δ) ⊂ Gk. Let x0 ∈
(x− δ, x+ δ) and de�ne δ0 = min(x0 − x+ δ, x+ δ − x0). It follows that

(x0 − δ0, x0 + δ0) ⊂ (x− δ, x+ δ)

Hence, for all y, z ∈ (x0−δ0, x0+δ0), we have y, z ∈ (x−δ, x+δ) which implies

|f(y)− f(z)| < 1

k

Thus, x0 ∈ Gk. Since it holds for all x0 ∈ (x−δ, x+δ), then (x−δ, x+δ) ⊂ Gk.
Since it holds for all x ∈ Gk, then Gk is open.

(b) Let's show that the elements in ∩∞
k=1Gk are precisely the points on which f

is continuous. Let x be a real number such that f is continuous at x. Let
k ∈ Z+, then by continuity of f at x, there is a δ > 0 such that

|f(y)− f(x)| < 1

2k

whenever y ∈ (x− δ, x+ δ). Hence, for all b, c ∈ (x− δ, x+ δ), by the triangle
inequality:

|f(b)− f(c)| < 1

k

Thus, x ∈ Gk. Since it holds for all k ∈ Z+, then x ∈ ∩∞
k=1Gk. It follows that

Cf ⊂ ∩∞
k=1Gk.

For the reverse inclusion, let x be an arbitrary element of ∩∞
k=1Gk, let's show

that f is continuous at x using the ϵ-δ de�nition. Let ϵ > 0, then by the
Archimedean Property of R, there is a n ∈ Z+ such that 1

n
< ϵ. But recall

that x ∈ ∩∞
k=1Gk ⊂ Gn, hence, there is a δ > 0 such that

|f(b)− f(c)| < 1

n

whenever b, c ∈ (x−δ, x+δ). Let y ∈ (x−δ, x+δ), since x is also in (x−δ, x+δ),
then

|f(x)− f(y)| < 1

n
< ϵ

Thus, by de�nition, f is continuous at x. Therefore, ∩∞
k=1Gk is precisely the

set of points on which f is continuous.

(c) The set of points at which f is continuous can be written as a countable inter-
section of open sets. Since open sets are Borel sets and Borel sets are closed
under countable intersections, then the set of points at which f is continuous
is a Borel set.

Exercise 13

Suppose (X,S) is a measurable space, E1, ..., En are disjoint subsets of X, and
c1, ..., cn are distinct nonzero real numbers. Prove that c1χE1 + ... + cnχEn is an
S-measurable function if and only if E1, ..., En ∈ S.
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Solution

( =⇒ ) Suppose that c1χE1 + ...+ cnχEn is S-measurable, then for all borel sets B,

(c1χE1 + ...+ cnχEn)
−1(B) ∈ S

Hence, for all k ∈ J1, nK, since {ck} is a Borel set, then

(c1χE1 + ...+ cnχEn)
−1({ck}) ∈ S

But notice that
(c1χE1 + ...+ cnχEn)

−1({ck}) = Ek

since the Ei's are disjoint and the ci's are distinct. It follows that E1, ..., En ∈ S.
( ⇐= ) Suppose that E1, ..., En ∈ S, then for all k ∈ J1, nK, the function χEk

is
S-measurable. Moreover, for all k ∈ J1, nK, since gk : x 7→ ckx is continuous, then it
is Borel measurable. It follows that ckχEk

= gk ◦ χEk
is S-measurable. Since mea-

surable functions are closed under addition, then c1χE1+ ...+cnχEn is S-measurable.

Exercise 14

(a) Suppose f1, f2, ... is a sequence of functions from a set X to R. Explain why

{x ∈ X : the sequence f1(x), f2(x), ... has a limit in R}

=
∞⋂
n=1

∞⋃
j=1

∞⋂
k=j

(fj − fk)
−1((− 1

n
, 1
n
)).

(b) Suppose (X,S) is a measurable space and f1, f2, ... is a sequence of S-measurable
functions from X to R. Prove that

{x ∈ X : the sequence f1(x), f2(x), ... has a limit in R}

is an S-measurable subset of X.

Solution

(a) First, to make it easier to read, denote by E the set

{x ∈ X : the sequence f1(x), f2(x), ... has a limit in R}

Let x ∈ E be arbitrary, then by de�nition, the sequence {fn(x)}n is a con-
vergent sequence in R. It follows that {fn(x)}n is a Cauchy sequence. Let
n ∈ Z+, since 1

n
> 0, then there is a j ∈ Z+ such that

|fa(x)− fb(x)| <
1

n

for all a, b ≥ j. In particular, for all k ≥ j, we have

|fj(x)− fk(x)| <
1

n
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Notice that this can be written as

1

n
< (fj − fk)(x) <

1

n

which again can be written as

x ∈ (fj − fk)
−1((− 1

n
, 1
n
))

Since it holds for all j ≥ k, then

x ∈
∞⋂
j=k

(fj − fk)
−1((− 1

n
, 1
n
))

Since there is a k ∈ Z+ such that it holds, then

x ∈
∞⋃
k=1

∞⋂
j=k

(fj − fk)
−1((− 1

n
, 1
n
))

Since it holds for all n ∈ Z+, then

x ∈
∞⋂
n=1

∞⋃
j=1

∞⋂
k=j

(fj − fk)
−1((− 1

n
, 1
n
))

It follows that E ⊂
⋂∞

n=1

⋃∞
j=1

⋂∞
k=j(fj − fk)

−1((− 1
n
, 1
n
)).

Now, for the reverse inclusion, suppose that

x ∈
∞⋂
n=1

∞⋃
j=1

∞⋂
k=j

(fj − fk)
−1((− 1

n
, 1
n
))

Let's prove that {fn(x)}n is a Cauchy sequence. Let ϵ > 0, then by the
Archimedean Property, there is an integer N ∈ Z+ such that 1

N
< ϵ. By our

assumption on x, it follows that

x ∈
∞⋃
j=1

∞⋂
k=j

(fj − fk)
−1((− 1

2N
, 1
2N

))

But it means that there is a j ∈ Z+ such that

x ∈
∞⋂
k=j

(fj − fk)
−1((− 1

2N
, 1
2N

))

Let r, s ≥ j, then the previous statement about x, it implies that

x ∈ (fj − fr)
−1((− 1

2N
, 1
2N

))

and
x ∈ (fj − fs)

−1((− 1
2N

, 1
2N

))

which are both equivalent to

|fj(x)− fr(x)| <
1

2N
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|fj(x)− fs(x)| <
1

2N

By the triangle inequality, this gives us

|fr(x)− fs(x)| <
1

N
< ϵ

Thus, {fn(x)}n is a Cauchy sequence and by completeness of R, we get that
the sequence {fn(x)}n converges in R. Therefore,

E =
∞⋂
n=1

∞⋃
j=1

∞⋂
k=j

(fj − fk)
−1((− 1

n
, 1
n
))

(b) Since for all n, j ∈ Z+ and k ≥ j, the function fj − fk is S-measurable, then

(fj − fk)
−1((− 1

n
, 1
n
)) ∈ S

since (− 1
n
, 1
n
) is a Borel set. Since it holds for all k ≥ j, then

∞⋂
k=j

(fj − fk)
−1((− 1

n
, 1
n
)) ∈ S

Similarly, since it holds for all j ∈ Z+, then

∞⋃
j=1

∞⋂
k=j

(fj − fk)
−1((− 1

n
, 1
n
)) ∈ S

Again, since it holds for all n ∈ Z+, then

∞⋂
n=1

∞⋃
j=1

∞⋂
k=j

(fj − fk)
−1((− 1

n
, 1
n
)) ∈ S

which proves our claim.

Exercise 15

Suppose X is a set and E1, E2, ... is a disjoint sequence of subsets of X such that
∪∞

i=1Ei = X. Let S = {∪k∈KEk : K ⊂ Z+}.

(a) Show that S is a σ-algebra on X.

(b) Prove that a function from X to R is S-measurable if and only if the function
is constant on Ek for every k ∈ Z+.

Solution

(a) Since this statement is a generalization of Exercise 1, then the proof will be
very similar. As most of the proofs showing that a collection is a σ-algebra,
let's split this one into three parts:
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� (∅ ∈ S) Since ∅ ⊂ Z, then ∪k∈∅Ek ∈ S. However, notice that ∪k∈∅Ek =
∅. It follows that ∅ ∈ S.

� (closed under complements) Let A ∈ S, then there exists a K0 ⊂ Z such
that A = ∪k∈K0Ek Consider K1 = Z \ K0 and its associated element
B = ∪k∈K1Ek in S. Since A ∩ B = ∅ and A ∪ B = X, then B = X \ A.
Hence, Ac ∈ S which proves that S is closed under complements.

� (closed under countable union) Let {Ai}i be a countable collection of
elements in S, then for all i ∈ Z+, there is a subset Ki of Z such that
Ai = ∪k∈Ki

Ek. Consider K = ∪∞
i=1Ki ⊂ Z and A = ∪k∈KEk ∈ S. By

consruction, A = ∪∞
i=1Ai ∈ S. Therefore, S is closed under countable

union.

Therefore, S is a σ-algebra on X.

(b) Let f : X → R, suppose �rst that f is constant on Ek for every k ∈ Z+. Call
ck the constant value of f on Ek. To show that f is S-measurable, let B ⊂ R
be a Borel set. Notice that

f−1(B) = f−1(B ∩ {ck}k) =
⋃

k;ck∈B

Ek ∈ S

It follows that f is S-measurable.
Suppose now that f is not constant on all Ek's, then, there is a k0 ∈ Z+ and
distinct real noumbers a and b such that both a, b ∈ f(Ek0). What we get
is that f−1({a}) ⊊ Ek0 . Hence, since that Ek's are disjoint, then we cannot
write f−1({a}) as a union of Ek's. Thus, f

−1({a}) /∈ S even if {a} is a Borel
set. It follows that f is not S-measurable.

Exercise 16

Suppose S is a σ-algebra on a set X and A ⊂ X. Let

SA = {E ∈ S : A ⊂ E or A ∩ E = ∅}

(a) Prove that SA is a σ-algebra on X.

(b) Suppose f : X → R is a function. Prove that f is S-measurable if and only if
f is measurable with respect to S and f is constant on A.

Solution

(a) First, since ∅ ∈ S and ∅ ⊂ A, then ∅ ∈ SA. Now, take an arbitrary set E in
SA, then we either have A ⊂ E or A ∩ E = ∅:

� If A ⊂ E, then X \ E ⊂ X \ A. It follows that (X \ E) ∩ A = ∅. But
since X \ E ∈ S, then X \ E ∈ SA.

� If A∩E = ∅, then for all x ∈ A, having x ∈ E would lead to x ∈ A∩E ̸=
∅ which is a contradiction. Hence, x ∈ X \ E. Hence, A ⊂ X \ E. But
since X \ E ∈ S, then X \ E ∈ SA.
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In all cases, we get that Ec ∈ SA. Now, let {Ei}i be a countable collection
of elements in SA, let's show that ∪∞

i=1Ei ∈ SA by cases. If each Ei satisfy
A ∩ Ei = ∅, then we must have A ∩ ∪∞

i=1Ei = ∅. Since ∪∞
i=1Ei ∈ S, then we

get that ∪∞
i=1Ei ∈ SA. However, if one of the Ei's satis�es A ⊂ Ei, then we

get

A ⊂ Ei ⊂
∞⋃
i=1

Ei

Thus, in both cases, it follows that ∪∞
i=1Ei ∈ SA. Therefore, SA is a σ-algebra.

(b) ( =⇒ ) Suppose that f is SA-measurable and let B be a Borel subset of R,
then

f−1(B) ∈ SA ⊂ S
which proves that f is S-measurable. Suppose that f is nonconstant on A, then
there exist x0, x1 ∈ A such that f(x0) ̸= f(x1). Consider f

−1({f(x0)}), then
by our assumption, it is contained in SA (since {f(x0)}isaBorelset). Hence,
it means that one of A ⊂ f−1({f(x0)}) or A ∩ f−1({f(x0)}) = ∅ holds. But
A ⊂ f−1({f(x0)}) cannot hold since x1 ∈ A and x1 /∈ f−1({f(x0)}). Similarly,
for the same reason, A ∩ f−1({f(x0)}) = ∅ cannot hold as well. From this
contradiction, we get that f must be constant on A.
( ⇐= ) Suppose that f is S-measurable and f ≡ c on A for some c ∈ R. Let
B ⊂ R be a Borel set, then, by our assumption, f−1(B) ∈ S. Now, notice
that we either have c ∈ B or c /∈ B. If c ∈ B, then it follows that A ⊂ f−1(B).
In that case, f−1(B) ∈ SA. If c /∈ B, then no elements of A are in f−1(B).
Hence, A ∩ f−1(B) = ∅. Again, in that case, f−1(B) ∈ SA. Therefore, f is
SA-measurable.

Exercise 17

Suppose X is a Borel subset of R and f : X → R is a function such that
{x ∈ X : f not continuous at x} is a countable set. Prove that f is a Borel measur-
able function.

Solution

Fix a ∈ R and let's show that f−1((a,∞)) is a Borel set. Let x ∈ X, then x ∈
f−1((a,∞)) if and only if f(x) > a. If f is continuous at x, then there is a δx > 0
such that

f((x− δx, x+ δx) ∩X) ⊂ (a,∞)

which can also be written as

(x− δx, x+ δx) ∩X ⊂ f−1((a,∞))

It follows that

f−1((a,∞)) =

X ∩
⋃

x : f is conti-
nuous at x

(x− δx, x+ δx)

 ∪ {x ∈ X : f not continuous at x}

But notice that ∪x(x− δx, x+ δx) is an open set so it is also a Borel set. Since X is
Borel as well, then X ∩∪x(x− δx, x+ δx) is a Borel set. It follows that f

−1((a,∞))
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is a Borel since any countable set is a Borel set. Therefore, f is Borel measurable.

Exercise 18

Suppose f : R → R is di�erentiable at every element of R. Prove that f ′ is a Borel
measurable function from R to R.

Solution

Consider the sequence f1, f2, ... of functions de�ned as follows:

fn(x) =
f
(
x+ 1

n

)
− f(x)

1
n

for all x ∈ R and n ∈ Z+. Since f is di�erentiable, then f is continuous. It follows
that each fn is continuous as well and consequently, Borel measurable. Now, notice
that for all x ∈ R,

lim
n→∞

fn(x) = lim
n→∞

f
(
x+ 1

n

)
− f(x)

1
n

= f ′(x)

Thus, f ′ must be Borel measurable as well.

Exercise 19

Suppose X is a nonempty set and S is the σ-algebra on X consisting of all subsets
of X that are either countable or have a countable complement in X. Give a char-
acterization of the S-measurable real-valued functions on X.

Solution

In this proof, I will show that that the S-measurable functions are precisely the
functions that are constant except on a countable set. Notice that the case where
X is �nite or countable is easy to prove since in that case, S = 2X and hence,
every function is S-measurable. Moreover, every function is constant except on a
countable set. Hence, the characterization is proved in that case.
Suppose that X is uncountable. Let f : X → R be a function such that f is
constant except on a countable set. It follows that there is a x0 ∈ X such that
f(x) = f(x0) for all x ∈ X except for countably many x. Let a ∈ R and consider
the set f−1((a,∞)). If a ≥ f(x0), then for all x ∈ X,

x ∈ f−1((a,∞)) =⇒ f(x) > a

=⇒ f(x) > f(x0)

=⇒ f(x) ̸= f(x0)

=⇒ x ∈ {x ∈ X : f(x) ̸= f(x0)}

Hence,
f−1((a,∞)) ⊂ {x ∈ X : f(x) ̸= f(x0)}

which is countable. It follows that f−1((a,∞)) ∈ S. If a < f(x0), then similarly, for
all x ∈ X,

x ∈ f−1((a,∞))c =⇒ f(x) ≤ a

=⇒ f(x) < f(x0)

=⇒ x ∈ {x ∈ X : f(x) ̸= f(x0)}
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which implies
f−1((a,∞))c ⊂ {x ∈ X : f(x) ̸= f(x0)}

Hence, f−1((a,∞))c is countable so f−1((a,∞)) ∈ S. Therefore, since it holds for
all cases and for all a ∈ R, it follows that f is S-measurable.
For the converse, consider an S-measurable function f and let's show that it is
constant on a countable set. De�ne the sets

A = {a ∈ R : f−1((a,∞)) is countable}

B = {b ∈ R : f−1((−∞, b]) is countable}

By the assumption that f is measurable, we must have A ∪ B = R. Moreover, if
x ∈ A ∩B, then both f−1((x,∞)) and f−1((−∞, x]) are countable. However,

X = f−1((x,∞)) ∪ f−1((−∞, x])

which would imply that X is countable. A contradiction since we assumed that X
is uncountable. Hence, A ∩ B = ∅. Now, notice that both A and B are nonempty.
By contradiction, if B = ∅, then A = R. Hence, for all n ∈ Z+, we get that
f−1((−n,∞)) is countable. However, since

X =
∞⋃
n=1

f−1((−n,∞))

then it would imply that X is countable. A contradiction that shows that B is
nonempty. The proof for A is the same. The last two important properties of A and
B are the following, if a ∈ A and a′ is a really number greater than a, then a′ ∈ A.
Similarly, if b ∈ B and b′ is a real number smaller than b, then b′ ∈ B. Let's prove
it for A only (the proof is the same for B). Let a ∈ A and a′ ≥ a, then

(a′,∞) ⊂ (a,∞)

which implies
f−1((a′,∞)) ⊂ f−1((a,∞))

But f−1((a,∞)) is countable so f−1((a′,∞)) is countable as well. It follows that
a′ ∈ A.
All of these properties of A and B show that A is nonempty and bounded below
by any element of B and B is nonempty and bounded above by any element of A.
Moreover, since A ∪ B = R, then supB = inf A. De�ne c = supB, then we either
have

B = (−∞, c) A = [c,∞)

or
B = (−∞, c] A = (c,∞)

In both cases, we have

(−∞, c) ⊂ B and (c,∞) ⊂ A
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Thus, for all n ∈ Z+, we have c− 1
n
∈ B and c+ 1

n
∈ A. It follows that

f−1(R \ c) = f−1((−∞, c) ∪ (c,∞))

= f−1((−∞, c)) ∪ f−1((c,∞))

= f−1

(
∞⋃
n=1

(
(−∞, c− 1

n

])
∪ f−1

(
∞⋃
n=1

(
c+

1

n
,∞
))

=
∞⋃
n=1

f−1

((
−∞, c− 1

n

])
∪

∞⋃
n=1

f−1

((
c+

1

n
,∞
))

which shows that f−1(R \ c) is countable since it the union of two countable unions
of countable sets. Thus, it means that f(x) ̸= c only for countably many x ∈ X.
Therefore, f is constant except on a countable set.

Exercise 20

Suppose (X,S) is a measurable space and f, g : X → R are S-measurable functions.
Prove that if f(x) > 0 for all x ∈ X, then f g (which is the function whose value at
x ∈ X equals f(x)g(x)) is an S-measurable function.

Solution

First, recall that both functions

ln : (0,∞) → R

exp : R → [0,∞)

are continuous on their respective domains (which are Borel sets). Hence, both
function of Borel measurable. Since Im(f) ⊂ (0,∞), then ln ◦f is S-measurable.
Since g and ln ◦f are both S-measurable functions from X to R, then g · (ln ◦f)
is S-measurable. Again, since Im(g · (ln ◦f)) ⊂ R and exp is S-measurable, then
f g = exp ◦(g · (ln ◦f)) is S-measurable.

Exercise 21

Prove 2.52.

Solution

Suppose (X,S) is a measurable space and f : X → [−∞,∞] is a function such that

f−1((a,∞]) ∈ S

for all a ∈ R. Let's show that f is S-measurable. To do so, de�ne the collection

T = {A ⊂ [−∞,∞] : f−1(A) ∈ S}

By properties of the inverse image of f , the collection T is a σ-algebra. Moreover,
by our assumption on f , {(a,∞] : a ∈ R} ⊂ T . Let (a, b) be an arbitrary open
interval, since (a, b) = (a,∞] \ (b,∞] and T is closed under set di�erences, then
(a, b) ∈ T . Since it holds for all open intervals, then T contains every open interval.
Since every open set can be written as a countable union of open intervals, then T
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contains every open set. Since T is a σ-algebra that contains every open set, then
it must contain every Borel subsets of R. Now, since

{∞} =
∞⋂
n=1

(n,∞] ∈ T

and

{−∞} =
∞⋂
n=1

[−∞, n] ∈ T

Then every Borel subset of [−∞,∞] is contained in T . Therefore, for all Borel
subset B of [−∞,∞],

f−1(B) ∈ S
It follows that f is S-measurable.

Exercise 22

Suppose B ⊂ R and f : B → R is an increasing function. Prove that f is continuous
at every element of B except for a countable subset of B.

Solution

First, let's prove that every discontinuity is a jump discontinuity by showing that
the left and right limits at a point always exist. Let x0 ∈ B and notice that if
there is no x ∈ B such that x < x0, then it follows that limx→x−

0
f(x) = f(x0).

Hence, suppose that there some points x ∈ B such that x < x0 and consider the set
E−

x = {f(x) : x < x0}. By our assumptions, the set E−
x is nonempty and bounded

above by f(x0). Hence, by completeness of R, we can de�ne s = supE−
x . Moreover,

by properties of the supremum, it is easy to see that s = limx→x−
0
f(x). Thus, for all

x0 ∈ B, its left limit exists. Similarly, if we de�ne the set E+
x = {f(x) : x > x0} and

take its in�mimum, we get that limx→x+
0
f(x) exists as well. Hence, for all x ∈ B,

to make the notation lighter,

f(x−) = lim
x→x−

0

f(x)

f(x+) = lim
x→x+

0

f(x)

Since f is increasing, then for all x ∈ B, we have that f(x) is an upper bound for
E−

x and a lower bound for E+
x . It follows that f(x−) ≤ f(x+) for all x ∈ B.

Consider now the set Df of discontinuity points of f . Notice that for all d ∈ Df , we
can de�ne the sets

F−
d = {x ∈ B : x < d} = (−∞, d) ∩B

F+
d = {x ∈ B : x > d} = (d,∞) ∩B

Notice that there are at most two points such that one of F−
d and F+

d is empty. Let A
denote the set of such points, then our observation can be translated by card(A) ≤ 2.
Now de�ne B = {d ∈ Df : supF−

d = inf F+
d = d} and C = Df \ (A ∪ B). By con-

struction, we have A ∪B ∪C = Df . Since A is �nite, our goal now is to prove that
both B and C are countable.
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For all d ∈ B, we must have supF−
d < d or inf F+

d > d. If supF−
d < d, then

de�ne qd to be any rational inside the interval (md, d) where md is the midpoint

between supF−
d and d (i.e. md =

supF−
d +d

2
). Otherwise, if inf F+

d > d, de�ne qd to
be any rational inside the interval (d,m′

d) where m
′
d is the midpoint between inf F+

d

and d (i.e. m′
d =

inf F+
d +d

2
). Now, let's prove that the function g : B → Q de�ned by

d 7→ qd is injective. Let d1, d2 ∈ B such that d1 < d2, let's show that qd1 ̸= qd2 by
cases.

� If supF−
d1

< d1 and supF−
d2

< d2, then qd1 and qd2 are rationals between
(md1 , d1) and (md2 , d2) respectively. It follows that qd1 < d1. Moreover,
supF−

d2
< md2 < qd2 and d1 ∈ F−

d2
so

qd1 < d1 ≤ supF−
d2

< d2

which shows that qd1 ̸= qd2 .

� If supF−
d1

< d1 and inf F+
d2

> d2, then qd1 is a rational inside the interval
(md1 , d1) and qd2 is a rational inside the interval (d2,m

′
d1
). Hence, qd1 < d1

and d2 < qd2 . It follows that

qd1 < d1 < d2 < qd2

which shows that qd1 ̸= qd2 .

� If inf F+
d1

> d1 and supF−
d2

< d2, then qd1 is a rational inside the interval
(d1,m

′
d1
) and qd2 is a rational inside the interval (md2 , d2). Hence, qd1 < m′

d1

and md2 < d2. Since d1 ∈ F−
d2
, then d1 ≤ supF−

d2
, similarly, inf F+

d1
≤ d2.

Hence:

qd1 < m′
d1

=
inf F+

d1
+ d1

2
≤ d2 + d1

2
≤

supF−
d2
+ d2

2
= md2 < qd2

which shows that qd1 ̸= qd2 .

� If inf F+
d1

> d1 and inf F+
d2

> d2, then qd1 is a rational inside the interval
(d1,m

′
d1
) and qd2 is a rational inside the interval (d2,m

′
d2
). It follows that

qd1 < m′
d1
and d2 < qd2 . Since d2 ∈ F+

d1
, then

qd2 < m′
d1

< inf F+
d1

≤ d2 < qd2

which shows that qd1 ̸= qd2 .

Therefore, g is injective so cardB ≤ cardQ which implies that B is countable.
Let's now prove that C is countable. Let d ∈ C. Since f is continuous at d if and
only if f(d−) = f(d+), then f is discontinuous at d if and only if f(d−) < f(d+).
It follows that f(d−) < f(d+). Hence, de�ne qd to be any rational in the nonempty
interval (f(d−), f(d+)). Let's prove that the function h : C → Q de�ned by d 7→ qd
is injective. Let d1, d2 ∈ C such that d1 < d2. Hence, by de�nition of C, we must
have d1 = inf F+

d1
. It follows that there must be a x ∈ B such that d1 < x < d2.

Hence, by monotonicity of f , we have f(d1) ≤ f(x) ≤ f(d2). By de�nition of E+
d1

and E−
d2
, we have

f(d1+) = inf E+
d1

≤ f(x) ≤ supE−
d2

= f(d2−)
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Therefore,
qd1 < f(d1+) ≤ f(d2−) < qd2

which shows that qd1 ̸= qd2 . Hence, h is injective so cardC ≤ cardQ. Thus, C is
countable. Since Df = A∪B ∪C and A, B, and C are countable, then Df must be
countable as well. Therefore, f is continuous except on the countable set Df .

Exercise 23

Suppose f : R → R is a strictly increasing function. Prove that the inverse function
f−1 : f(R) → R is a continuous function.
[Note that this exercise does not have as a hypothesis that f is continuous.]

Solution

Let x0 ∈ f(R) and let's prove that

lim
x→x0

f−1(x) = f−1(x0)

Let ϵ > 0 and de�ne x1 = f−1(x0) − ϵ and x2 = f−1(x0) + ϵ which are both in the
domain of f−1. Notice that x1 < x0 < x2. Let δ = min(x0 − x1, x2 − x0) and let
x ∈ f(R) such that 0 < |x− x0| < δ, hence:

x1 < x < x2 =⇒ f(f−1(x0)− ϵ) < x < f(f−1(x0) + ϵ)

=⇒ f−1(x0)− ϵ < f−1(x) < f−1(x0) + ϵ

=⇒ |f−1(x)− f−1(x0)|ϵ

So limx→x0 f
−1(x) = f−1(x0) which implies that f−1 is continuous at x0. Therefore,

f−1 is continuous on f(R).

Exercise 24

Suppose B ⊂ R is a Borel set and f : R → R is a strictly increasing function. Prove
that f(B) is a Borel set.

Solution

First, we show that f(R) is a Borel set. Since f has countably many discontinuities,
then we can enumerate them as d1, d2, .... Let i ∈ Z+, de�ne

Di = [f(di−), f(di+)] \ {f(di)}

which represents the set of points not attained by f because of di. In this proof, I
denote by f(x−) the limit of f as z → x from the left and f(x+) the limit of f as
z → x from the right. Notice that each Di is a Borel set so ∪∞

i=1Di is a Borel set as
well. De�ne now

Im = (−∞, inf
R

f ]

IM = [sup
R

f,∞)

and consider that Im = ∅ if f is unbounded below and IM = ∅ if f is unbounded
above. Again, in all cases, both Im and IM are Borel sets. It follows that the set

I = R \

[
Im ∪ IM ∪

∞⋃
i=1

Di

]
is a Borel set. The main goal of this proof is to show that f(R) = I.
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� ( =⇒ ) Let y ∈ Im ∪ IM ∪
⋃∞

i=1Di. Let's prove by cases that y ∈ R \ f(R).

� If y ∈ Im, then y ≤ infR f . If y = f(x0) for some x0 ∈ R, then strict
monotonicity of f , we have:

inf
R

f ≤ f(x0 − 1) < y ≤ inf
R

f

A contradiction that shows that y ∈ R \ f(R).

� If y ∈ IM , the proof is the same as in the previous case.

� If ∪∞
i=1Di, then there is a i ∈ Z+ such that y ∈ Di = [f(di−), f(di+)] \

{f(di)}. Suppose by contradiction that y = f(x0) for some x0 ∈ R. Since
y ̸= f(di), then we either have x0 < di or di < x0. Suppose without loss
of generality that x0 < di, then y ∈ {f(x) : x < di} which implies that

y ≤ sup{f(x) : x < di}

But y ∈ [f(di−), f(di+)] \ {f(di)} so y ≥ f(di−) = sup{f(x) : x < di}.
It follows that y = sup{f(x) : x < di}. However, since x0 < di, then
there exists a x1 ∈ (x0, di). Since x0 < x1 and x1 < di, then

sup{f(x) : x < di} = y = f(x0) < f(x1) ≤ sup{f(x) : x < di}

A contradiction that shows that y ∈ R \ f(R).

Therefore, Im ∪ IM ∪
⋃∞

i=1Di ⊂ R \ f(R) which is equivalent to f(R) ⊂ I.

� ( ⇐= ) Let's now prove the reverse inclusion. Let y ∈ R \ f(R), if y < f(x)
for all x ∈ R, then y ∈ Im ⊂ Im ∪ IM ∪

⋃∞
i=1Di. If y > f(x) for all x ∈ R,

then y ∈ IM ⊂ Im∪ IM ∪
⋃∞

i=1Di. Hence, we can suppose that there exist real
numbers x1 and x2 such that f(x1) < y < f(x2). Consider now the sets

A1 = {x ∈ R : f(x) < y}

A2 = {x ∈ R : f(x) > y}

Since x1 ∈ A1 and x2 ∈ A2, then the sets are nonempty. Moreover, since
y ̸= f(x) for all x ∈ R, then A1 ∪A2 = R. Since f is strictly increasing, then
any element of A2 is an upper bound for A2, it follows that there is a c ∈ R
such that either

A1 = (−∞, c] A2 = (c,∞)

or
A1 = (−∞, c) A2 = [c,∞)

Suppose without loss of generality that f(c) < y, then

A1 = (−∞, c] A2 = (c,∞)

Let's show that f is discontinuous at c. Since y is a lower bound for the set
f(A2), then y ≤ inf f(A2). However, since f is increasing, notice that

f(c+) = inf{f(x) : x > c} = inf f((c,∞)) = inf f(A2)
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Thus,
f(c) < y ≤ inf f(A2) = f(c+)

which shows that f is discontinuous at c (otherwise, we would have f(c) =
f(c+)). Thus, there is a i ∈ Z+ such that c = di. Hence,

y ∈ (f(di), f(di+)] ⊂ Di ⊂ IM ⊂ Im ∪ IM ∪
∞⋃
i=1

Di

Therefore, R\f(R) ⊂ IM ⊂ Im∪IM∪
⋃∞

i=1Di which is equivalent to I ⊂ f(R).

Now that we showed that f(R) = I, it follows that f(R) is a Borel set. Using the
previous exercice, we get that f−1 : f(R) → R is a continuous function, hence,
Borel measurable. It follows that (f−1)−1(B) is a Borel set. However, since

(f−1)−1(B) = {y ∈ f(R) : f−1(y) ∈ B} = {y ∈ f(R) : y ∈ f(B)} = f(B)

then f(B) is a Borel set.

Exercise 25

Suppose B ⊂ R and f : B → R is an increasing function. Prove that there exists a
sequence f1, f2, ... of strictly increasing functions from B to R such that

f(x) = lim
k→∞

fk(x)

for every x ∈ B.

Solution

Consider the sequence of functions f1, f2, ... de�ned by

fn(x) = f(x) +
1

n
x

for all x ∈ B and n ∈ Z+. Since f is increasing and 1
n
x is strictly increasing for all

n ∈ Z+, then every function in the sequence is strictly increasing. Moreover, for all
x ∈ B:

lim
k→∞

fk(x) = f(x) + x lim
k→∞

1

k
= f(x)

which proves our claim.

Exercise 26

Suppose B ⊂ R and f : B → R is a bounded increasing function. Prove that there
exists an increasing function g : R → R such that g(x) = f(x) for all x ∈ B.

Solution

First, assume that B is non empty. For all x ∈ R, de�ne the set

Ex = {f(y) : y ≤ x, y ∈ B}

Consider the function g : R → R de�ned by

g(x) =

{
supEx if Ex ̸= ∅
infR f if Ex = ∅
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Notice that g is well de�ned since f is bounded. Let's show that g|B = f . Take
x ∈ B and notice that Ex is non empty since it contains f(x). Moreover, since f is
increasing, then f(x) is an upperbound for Ex. It follows that g(x) = supEx = f(x).
Let's now show that g is increasing. If we take a, b ∈ R such that a < b, then we
can proceed by cases.

� If both a and b are in B, then g(a) ≤ g(b) follows from the fact that f is
increasing :

g(a) = f(a) ≤ f(b) = g(b)

� If a ∈ B but b /∈ B, then f(a) ∈ Eb ̸= ∅ which implies

g(a) = f(a) ≤ supEb = g(b)

� If a /∈ B and b ∈ B, then either Ea is empty and we get

g(a) = inf
R

f ≤ f(b) = g(b)

either Ea is nonempty and we get that f(b) is an upperbound for Ea. Hence:

g(a) = supEa ≤ f(b) = g(b)

� If both a and b are not in B, then we, again, have di�erent possible cases.

� If Eb = ∅, then we must have Ea = ∅ as well since Ea ⊂ Eb. Hence,

g(a) = g(b) = inf
R

f

� If Eb ̸= ∅ and Ea = ∅, then there exists a x ∈ B such that f(x) ∈ Eb.
It follows that

g(a) = inf
R

f ≤ f(x) ≤ supEb = g(b)

� If Eb ̸= ∅ and Ea ̸= ∅, then we get Ea ⊂ Eb which implies that supEa ≤
supEb. Thus:

g(a) = supEa ≤ supEb = g(b)

After this tedious proof by cases, we now have shown that g is an increasing function
that extends f on R.

Exercise 27

Prove or give a counterexample: If (X,S) is a measurable space and

f : X → [−∞,∞]

is a function such that f−1((a,∞)) ∈ S for every a ∈ R, then f is an S-measurable
function.
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Solution

Let X = R and S be the σ-algebra of subsets of R that are either countable or have
a countable complement. De�ne f : X → [−∞,∞] as

f(x) =

{
+∞ if x ≥ 0

−∞ if x < 0

Notice that for all a ∈ R, we have f−1((a,∞)) = ∅ ∈ S. However, we cannot
conclude that f is S-measurable because {∞} is a Borel subset of [−∞,∞] but
f−1({∞}) = [0,∞) /∈ S. Therefore, f is not S-measurable.

Exercise 28

Suppose f : B → R is a Borel measurable function. De�ne g : R → R by

g(x) =

{
f(x) if x ∈ B

0 if x ∈ R \B

Prove that g is a Borel measurable function.

Solution

Fix a ∈ R and let's show that g−1((a,∞)) is a Borel set. First, notice that B is
a Borel set since B = f−1(R) and f is Borel measurable. If a ≥ 0, then we can
show that g−1((a,∞)) = f−1((a,∞)) : if g(x) > a ≥ 0, then it must be that x ∈ B
which implies that f(x) = g(x) > a; and if f(x) > a, then it directly follows that
g(x) = f(x) > a. Thus, g−1((a,∞)) is a Borel set. Now, if a < 0, then for the same
reasons as above, g−1((a,∞)) = f−1((a,∞)) ∪ (R \ B) which is again a Borel set.
Therefore, g is Borel measurable.

Exercise 29

Give an example of a measurable space (X,S) and a family {ft}t∈R such that each
ft is an S-measurable function from X to [0, 1], but the function f : X → [0, 1]
de�ned by

f(x) = sup{ft(x) : t ∈ R}

is not S-measurable.
[Compare this exercise to 2.53, where the index set is Z+ rather than R.]

Solution

Let X = R and S be the σ-algebra of subsets of R that are countable or have a
countable complement. For all t < 0, de�ne ft to be the constant function zero.
If t ≥ 0, de�ne ft = χ{t}. For each t ∈ R, the function ft is S-measurable by
construction. However, notice that the function de�ned by

f(x) = sup{ft(x) : t ∈ R}

for all x ∈ R is simply the characteristic function of the interval [0,∞), i.e. f =
χ[0,∞). But we know that χE is S-measurable if and only if E ∈ S. However,
[0,∞) /∈ S so f is not S-measurable.
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Exercise 30

Show that

lim
j→∞

(
lim
k→∞

(cos(j!πx))2k
)
=

{
1 if x is rational,

0 if x is irrational

for every x ∈ R.
[This example is due to Henri Lebesgue.]

Solution

Let x ∈ R and consider the case where x is a rational number, then, there exist
a ∈ Z and b ∈ Z+ such that x = a/b. For all j ≥ b, we have j!x ∈ Z since j! is a
multiple of b which cancels out with the denominator of x. But we know that the
cosine of an integer multiple of π is either 1 or -1, hence, for all k ∈ Z+, we have
cos(j!πx)2k = 1. Since it holds for all k ∈ Z+, then

lim
k→∞

(cos(j!πx))2k = 1

Since it holds for all j large enough, i.e. j ≥ b, then

lim
j→∞

(
lim
k→∞

(cos(j!πx))2k
)
= 1

Now, consider the case where x is irrational and let j ∈ Z+. Since the cosine of
yπ is 1 or -1 if and only if y is an integer, then cos(j!πx) ∈ (−1, 1) since j!x is an
irrational number. It follows that (cos(j!πx))2 is also in the interval (−1, 1). Hence,
if we think of {(cos(j!πx))2k}k as a geometric series with q = (cos(j!πx))2, then

lim
j→∞

(
lim
k→∞

(cos(j!πx))2k
)
= 0

Since it holds for all j ∈ Z+, then

lim
j→∞

(
lim
k→∞

(cos(j!πx))2k
)
= 0

which proves our claim.



CHAPTER 2. MEASURES 61

2C Measures and Their Properties

Exercise 1

Explain why there does not exist a measure space (X,S, µ) with the property that
{µ(E) : E ∈ S} = [0, 1).

Solution

By contradiction, let (X,S, µ) be such a measure space. Hence, by our assumptions,
µ(X) < 1. However, if we let α be any real number in (µ(X), 1), then α ∈ {µ(E) :
E ∈ S} which implies that there is a set F ∈ S such that µ(F ) = α. But F ⊂ X,
so by monotonicity:

µ(X) < α = µ(F ) ≤ µ(X)

A contradiction. Therefore, such a measure space cannot exist.

Exercise 2

Suppose µ is a measure on (Z+, 2Z
+
). Prove that there is a sequence w1, w2, ... in

[0,∞] such that

µ(E) =
∑
k∈E

wk

for every set E ⊂ Z+.

Solution

First, de�ne the sequence {wk}k as follows

wk = µ({k})

for all k ∈ Z+. Hence, for all E ∈ 2Z
+
, we can write E as the disjoint union of

the singletons of its elements. This disjoint union is either �nite or countable since
E ⊂ Z+. Therefore, by �nite or countable additivity:

µ(E) = µ

(⋃
k∈E

{k}

)
=
∑
k∈E

µ({k})

=
∑
k∈E

wk

which proves our claim.

Exercise 3

Give an example of a measure µ on (Z+, 2Z
+
) such that

{µ(E) : E ⊂ Z+} = [0, 1].

Solution

De�ne a measure µ on (Z+, 2Z
+
) by:

µ(E) =
∑
k∈E

1

2k
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To prove that {µ(E) : E ⊂ Z+} = [0, 1], let c ∈ [0, 1] and let's show that there is a
E ⊂ Z+ such that µ(E) = c. Notice that c has a binary representation of the form:

c =
∞∑
k=1

ak
1

2k

where the ak's are either 0 or 1. Hence, if we de�ne E = {k : ak = 1}, we get

µ(E) =
∑
k∈E

1

2k
=

∞∑
k=1

ak
1

2k
= c

which proves our claim.

Exercise 4

Give an example of a measure space (X,S, µ) such that

{µ(E) : E ⊂ Z+} = {∞} ∪
∞⋃
k=0

[3k, 3k + 1].

Solution

Let X = Z, S = 2Z and de�ne µ by

µ({k}) =

{
1
2k

if x ≥ 1,

3 if x ≤ 0

Simply use the countable additivity of µ to extend µ on all of 2Z and not just the
singletons. Let's show that for all c ∈ {∞}∪

⋃∞
k=0[3k, 3k+1], there is a E ⊂ Z such

that µ(E) = c. First, consider the case c = ∞, then de�ning E = {−k : k ≥ 0}
gives us

µ(E) =
∑
k∈E

µ({k}) =
∞∑
k=0

µ({−k}) =
∞∑
k=0

3 = ∞

Now, consider the case c ∈ [3k, 3k + 1], then there exists an integer k ≥ 0 and a
real number α ∈ [0, 1] such that c = 3k+α. Since we can write α in binary form as
follows:

c =
∞∑
n=1

an
1

2n

where the an's are either 0 or 1, then we can de�ne the set E = {−n : n ∈ J1, kK} ∪
{n ∈ Z+ : an = 1}:

µ(E) = µ({−n : n ∈ J1, kK} ∪ {n ∈ Z+ : an = 1})
= µ({−n : n ∈ J1, kK}) + µ({n ∈ Z+ : an = 1})

=
k∑

n=1

µ({−n}) +
∞∑
n=1

anµ({n})

=
k∑

n=1

3 +
∞∑
n=1

an
1

2n

= 3k + α

= c
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Since we covered all cases, we have,

{∞} ∪
∞⋃
k=0

[3k, 3k + 1] ⊂ {µ(E) : E ⊂ Z+}

For the reverse inclusion, consider E ⊂ Z and let's show that µ(E) ∈ {∞} ∪⋃∞
k=0[3k, 3k + 1]. To do so, notice that by de�nition of µ, we get

µ(E) = µ({k ∈ E : k ≤ 0}) + µ({k ∈ E : k ≥ 1})

=
∑
k∈E
k≤0

µ({k}) +
∞∑
k=1

akµ({k})

=
∑
k∈E
k≤0

3 +
∞∑
k=1

ak ·
1

2k

= 3card{k ∈ E : k ≤ 0}+
∞∑
k=1

ak ·
1

2k

where ak = 1 when k ∈ E, otherwise, ak = 0. If the set {k ∈ E : k ≤ 0} is in�nite,
then µ(E) = ∞ ∈ {∞}∪

⋃∞
k=0[3k, 3k+1]. If the set is �nite, de�ne n = card{k ∈ E :

k ≤ 0} and notice that the term α =
∑∞

k=1 ak ·
1
2k

is simply the binary representation
of a number in [0, 1]. Hence, µ(E) = 3n+α ∈ [3n, 3n+1] ⊂ {∞}∪

⋃∞
k=0[3k, 3k+1].

Thus,

{µ(E) : E ⊂ Z+} ⊂ {∞} ∪
∞⋃
k=0

[3k, 3k + 1]

Therefore,

{µ(E) : E ⊂ Z+} = {∞} ∪
∞⋃
k=0

[3k, 3k + 1]

Exercise 5

Suppose (X,S, µ) is a measure space such that µ(X) < ∞. Prove that if A is a
set of disjoint sets in S such that µ(A) > 0 for every A ∈ A, thenA is a countable set.

Solution

Let n ∈ Z+ and de�ne the collection

An = {A ∈ A : µ(A) ≥ 1
n
}

Suppose that An is in�nite, then we can extract a countable sequence {An}n of
sets in An. Since the An's are disjoint and in S, then ∪∞

n=1An ∈ S. Moreover, by
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monotonicity, we get

µ(X) ≥ µ

(
∞⋃
n=1

An

)

=
∞∑
n=1

µ(An)

≥
∞∑
n=1

1

n

= ∞

A contradiction. Thus, for all n ∈ Z+, the collection An is �nite. But since

A =
∞⋃
n=1

An

is a countable union of �nite sets, then A is countable.

Exercise 6

Find all c ∈ [3,∞) such that there exists a measure space (X,S, µ) with

{µ(E) : E ∈ S} = [0, 1] ∪ [3, c].

Solution

Let c ∈ [3,∞) and suppose that there exists a measure space (X,S, µ) such that

{µ(E) : E ∈ S} = [0, 1] ∪ [3, c]

Since µ(X) is both in the set {µ(E) : E ∈ S} and an upperbound for the set
{µ(E) : E ∈ S}, then

µ(X) = sup{µ(E) : E ∈ S} = sup([0, 1] ∪ [3, c]) = c

Since there is a E ∈ S such that µ(E) = 1, then

µ(X \ E) = c− 1

It follows that c cannot be in the interval [3, 4) (otherwise, we would get a set of
measure in the interval [2, 3) which would contradict our assumption on the measure
space). Hence, we must have c ≥ 4. Suppose that c > 4, then 3 < c − 1 which
implies that there must be a ϵ ∈ (0, 1) such that 3 ≤ c − 1 − ϵ. Hence, there must
be a set E ∈ S such that µ(E) = c− 1− ϵ. Thus:

µ(X \ E) = µ(X)− µ(E)

= c− (c− 1− ϵ)

= 1 + ϵ

∈ (1, 2)
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which is a contradiction. Therefore, the only possible value for c is 4. Let's now
prove that there actually is a measure space (X,S, µ) such that

{µ(E) : E ∈ S} = [0, 1] ∪ [3, 4]

Consider the set X = Z+ ∪ {0}, S = 2X and de�ne the measure µ by

µ({n}) =

{
3 if n = 0,
1
2n

if n ≥ 1

We can easily extend the de�nition of µ to any subset of X by countable additivity.
Let's now show that this measure space has the right property. Let c ∈ [0, 1]∪ [3, 4]
and let's show that there is a set E ⊂ X such that µ(E) = c. If c ∈ [0, 1], then write
c in its binary form:

c =
∞∑
n=1

an
1

2n

where the an's are in the set {0, 1}. De�ne the set E = {n ∈ Z+ : an = 1} ⊂ X.
Hence, by construction:

µ(E) =
∑
n∈E

µ({n}) =
∞∑
n=1

an
1

2n
= c

Similarly, if c ∈ [3, 4], consider the binary expansion of c− 3, construct the set E as
previously and add the element 0 to the set, we would get: µ(E) = 3+

∑∞
n=1 bn

1
2n

=
3 + c− 3 = c Thus,

[0, 1] ∪ [3, 4] ⊂ {µ(E) : E ∈ S}

To prove the reverse inclusion, let E ⊂ X. If 0 ∈ E, then

µ(E) = 3 +
∞∑
n=1

an
1

2n
∈ [3, 4] ⊂ [0, 1] ∪ [3, 4]

Similarly, for the same reasons, if 0 /∈ E, then µ(E) ∈ [0, 1] ⊂ [0, 1]∪[3, 4]. Therefore,

{µ(E) : E ∈ S} = [0, 1] ∪ [3, 4]

which proves that c = 4 is the only possible value.

Exercise 7

Give an example of a measure space (X,S, µ) such that

{µ(E) : E ∈ S} = [0, 1] ∪ [3,∞)

Solution

Consider the measure space de�ned by X = Z, S = 2Z and µ de�ned by

µ({k}) =

{
1
2k

if k ≥ 1,

3− k if k ≤ 0
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From this, it is easy to extend the de�nition of µ to any subset of Z. Let's show
that

{µ(E) : E ∈ S} = [0, 1] ∪ [3,∞)

First, let E ⊂ Z and split it into E1 = {k ∈ E : k ≥ 1} and E2 = {k ∈ E : k ≤ 0}
which are disjoint. Notice that by countable additivity, µ(E2) can be written as∑∞

k=1 an
1
2n

where an is 0 when k /∈ E and 1 when k ∈ E. But notice that this is
simply a base 2 representation of a number in [0, 1]. Hence, µ(E2) ∈ [0, 1]. Now, for
E1, notice that µ(E1) is a sum of integers greater than or equal to 3 by countable
additivity. It follows that µ(E1) is either 0 (if it is empty) or an integer greater than
or equal to 4. Therefore:

µ(E) = µ(E1) + µ(E2) ∈ [0, 1] ∪ [3,∞)

which shows that
{µ(E) : E ∈ S} ⊂ [0, 1] ∪ [3,∞)

For the reverse inclusion, Let c ∈ [0, 1]∪ [3,∞) and let's show that there is a subset
E of Z such that µ(E) = c. If c ∈ [0, 1], write it in binary form as

∑∞
n=1 an

1
2n

and
de�ne the set E = {n : an = 1}, it follows that

µ(E) =
∑
k∈E

µ({k}) =
∞∑
n=1

an
1

2n
= c

Similarly, if c ∈ [3,∞), then there is an integer c0 ≥ 3 and a real α ∈ [0, 1] such that
c = c0 + α. As previously, write α in base 2 and de�ne the set E in the same way.
Moreover, add to the set E the integer 3− c0, it will follow that µ(E) = c0 + α = c
for the same reasons as above. Therefore,

{µ(E) : E ∈ S} = [0, 1] ∪ [3,∞)

which proves our claim.

Exercise 8

Give an example of a set X, a σ-algebra S of subsets of X, a set A of subsets of X
such that the smallest σ-algebra on X containing A is S, and two measures µ and
ν on (X,S) such that µ(A) = ν(A) for all A ∈ A and µ(X) = ν(X) < ∞, but µ ̸= ν.

Solution

Let X = [0, 8], A = {[0, 4], [2, 6]}, S the σ-algebra generated by A and the two
follwing measures on (X,S):

µ = δ1 + δ5

ν = δ3 + δ7

where δi is the Dirac delta meaasure at i. We can easily prove that both µ and ν
are indeed measures on (X,S) (it will be proved in the following exercise). First,
notice that

µ([0, 4]) = δ1([0, 4]) + δ5([0, 4]) = 1 + 0 = 1

ν([0, 4]) = δ3([0, 4]) + δ7([0, 4]) = 1 + 0 = 1
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and
µ([2, 6]) = δ1([2, 6]) + δ5([2, 6]) = 0 + 1 = 1

ν([2, 6]) = δ3([2, 6]) + δ7([2, 6]) = 1 + 0 = 1

which implies that µ(A) = ν(A) for all A ∈ A. Moreover,

µ(X) = δ1(X) + δ5(X) = 1 + 1 = 2

ν(X) = δ3(X) + δ7(X) = 1 + 1 = 2

so µ(X) = ν(X) < ∞. Consider now the set [2, 4] = [0, 4] ∩ [2, 6] ∈ S:

µ([2, 4]) = δ1([2, 4]) + δ5([2, 4]) = 0 + 0 = 0

ν([2, 4]) = δ3([2, 4]) + δ7([2, 4]) = 1 + 0 = 1

so µ ̸= ν. Therefore, X, S, A, µ and ν satisfy all the desired properties.

Exercise 9

Suppose µ and ν are measures on a measurable space (X,S). Prove that µ+ ν is a
measure on (X,S). [Here, µ + ν is the usual sum of two functions: if E ∈ S, then
(µ+ ν)(E) = µ(E) + ν(E).]

Solution

We only have two properties to prove, that the empty set is mapped to zero and the
countable additivity. First,

(µ+ ν)(∅) = µ(∅) + ν(∅) = 0 + 0 = 0

Moreover, if {Ei}i is a countable collection of pairwise disjoint sets in S, then

(µ+ ν)

(
∞⋃
i=1

Ei

)
= µ

(
∞⋃
i=1

Ei

)
+ ν

(
∞⋃
i=1

Ei

)

=
∞∑
i=1

µ(Ei) +
∞∑
i=1

ν(Ei)

=
∞∑
i=1

[µ(Ei) + ν(Ei)]

=
∞∑
i=1

(µ+ ν)(Ei)

Therefore, µ+ ν is a measure on (X,S).

Exercise 10

Give an example of a measure space (X,S, µ) and a decreasing sequence E1 ⊃ E2 ⊃
... of sets in S such that

µ

(
∞⋂
k=1

Ek

)
̸= lim

k→∞
µ(Ek).
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Solution

Let X = R, S = 2R and µ be the counting measure on (R, 2R). Consider the
sequence of sets de�ned by Ek = [k,∞) for all k ∈ Z+. Notice that for all k ∈ Z+,
the set Ek is in�nite so it has in�nite measure. Since it holds for all k ∈ Z+, then

lim
k→∞

µ(Ek) = ∞

Moreover, since ∩∞
k=1Ek = ∅, then

µ

(
∞⋂
k=1

Ek

)
= 0

Therefore,

µ

(
∞⋂
k=1

Ek

)
̸= lim

k→∞
µ(Ek)

Exercise 11

Suppose (X,S, µ) is a measure space and C,D,E ∈ S are such that

µ(C ∩D) < ∞, µ(C ∩ E) < ∞, and µ(D ∩ E) < ∞.

Find an prove a formula for µ(C ∪D ∪E) in terms of µ(C), µ(D), µ(E), µ(C ∩D),
µ(C ∩ E), µ(D ∩ E), and µ(C ∩D ∩ E).

Solution

First, by 2.61, since µ(D ∩ E) < ∞, then

µ(D ∪ E) = µ(D) + µ(E)− µ(D ∩ E) (1)

Moreover, by 2.61, since µ(C ∩D ∩ E) ≤ µ(D ∩ E) < ∞ (by monotonicity), then

µ((C ∩D) ∪ (C ∩ E)) = µ(C ∩D) + µ(C ∩ E)− µ(C ∩D ∩ E) (2)

Lastly, combining (1) and (2) and applying 2.61 with the fact that µ((C ∩D)∪ (C ∩
E)) ≤ µ(C ∩D) + µ(C ∩ E) < ∞ gives us

µ(C ∪D ∪ E) = µ(C ∪ (D ∪ E))

= µ(C) + µ(D ∪ E)− µ(C ∩ (D ∪ E))

= µ(C) + µ(D ∪ E)− µ((C ∩D) ∪ (C ∩ E))

= µ(C) + µ(D) + µ(E)− µ(D ∩ E)

− [µ(C ∩D) + µ(C ∩ E)− µ(C ∩D ∩ E)]

= µ(C) + µ(D) + µ(E)− µ(D ∩ E)

− µ(C ∩D)− µ(C ∩ E) + µ(C ∩D ∩ E)

which is a satsfying formula for what was asked.
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Exercise 12

Suppose X is a set and S is the σ-algebra of all subsets E of X such that E is count-
able or X \ E is countable. Give a complete description of the set of all measures
on (X,S).

Solution

In this proof, the goal will be to show that the measures on (X,S) are precisely the
functions of the form

µ(E) =

{∑
x∈E w(x) if E is countable

α +
∑

x∈E w(x) if E is uncountable

where α ∈ [0,∞] and w : X → [0,∞] is a function. More precisely, the goal is to
show that any measure on (X,S) is of this form and that any function of this form
is a measure on (X,S).

� Let µ : S → [0,∞] be a measure on (X,S). De�ne w : X → [0,∞] by
w : x 7→ µ({x}). This function is well-de�ned since all singletons are in S
since they are countable. It follows that for all countable sets E = {e1, e2, ...},

µ(E) =
∞∑
i=1

µ({ei}) =
∑
x∈E

w(x)

Now, suppose that
∑

x∈E w(x) = ∞, then de�ne α = ∞ which makes the
following equation true

µ(E) = α +
∞∑
i=1

µ({ei}) =
∑
x∈E

w(x)

for all uncountable set E ∈ S. In that case, we have shown that µ is of the
desired form.
Suppose now that there is an uncountable set E0 ∈ S such that

∑
x∈E0

w(x) <
∞, de�ne

α = µ(E0)−
∑
x∈E0

w(x) ≥ 0

[Notice that α is positive since µ(E0) is an upper bound for the set {
∑n

i=1w(xi) :
x1, ..., xn ∈ E0} and that

∑
x∈E0

w(x) := sup{
∑n

i=1w(xi) : x1, ..., xn ∈ E0}.]
Let's show that µ(E) = α +

∑
x∈E w(x) for all uncountable sets E ∈ S. If∑

x∈E w(x) = ∞, then

µ(E) = ∞ = α +
∑
x∈E

w(x)
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If
∑

x∈E w(x) < ∞, then

µ(E) = µ(E0)−
∑

x∈E0\E

w(x) +
∑

x∈E\E0

w(x)

= µ(E0)−
∑

x∈E0\E

w(x)−
∑

x∈E∩E0

w(x) +
∑

x∈E∩E0

w(x) +
∑

x∈E\E0

w(x)

= µ(E0)−
∑
x∈E0

w(x) +
∑
x∈E

w(x)

= α +
∑
x∈E

w(x)

which shows that in any case, µ is of the desired form.

� Consider now a function µ : S → [0,∞] such that

µ(E) =

{∑
x∈E w(x) if E is countable

α +
∑

x∈E w(x) if E is uncountable

where α ∈ [0,∞] and w : X → [0,∞] is a function. Let's prove that µ is a
measure on (X,S). First,

µ(∅) =
∑
x∈∅

w(x) = 0

Now, let {Ei}i be a countable pairwise disjoint collection of sets in S. Since
they are disjoint, then there is at most one uncountable Ei. Otherwise, if
Ei1 and Ei2 are both uncountable, then Ei2 is contained in the complement
of Ei1 which implies that Ec

i1
is also uncountable. A contradiction with the

de�nition of S. Thus, there is at most one uncountable Ei. If none of the Ei's
are uncountable, then

µ

(
∞⋃
i=1

Ei

)
=

∑
x∈∪∞

i=1Ei

w(x)

=
∞∑
i=1

∞∑
j=1

w(ei,j)

=
∞∑
i=1

µ(Ei)



CHAPTER 2. MEASURES 71

If (wlog) E1 is uncountable, then

µ

(
∞⋃
i=1

Ei

)
= α +

∑
x∈∪∞

i=1Ei

w(x)

= α +
∑
x∈E1

w(x) +
∑

x∈∪∞
i=2Ei

w(x)

= µ(E1) +
∞∑
i=2

∞∑
j=1

w(ei,j)

= µ(E1) +
∞∑
i=2

µ(Ei)

=
∞∑
i=1

µ(Ei)

Therefore, µ is a measure on (X,S).

Therefore, we have a complete description of the measures on the measurable space
(X,S).
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2D Lebesgue Measure

Exercise 1

(a) Show that the set consisting of those numbers in (0,1) that have a decimal
expansion containing one hundred consecutive 4s is a Borel subset of R.

(b) What is the Lebesgue measure of the set in part (a)?

Solution

(a) First, de�ne S to be the set consisting of the numbers in (0,1) that have a
decimal expansion containing one hundred consecutive 4s. The central idea of
this proof is to notice that for a given x ∈ S, there must be at least one part
of the decimals that contains a hundred consecutive 4s, let's focus on the �rst
time that we �nd a hundred of consecutive 4s in the decimals, then we must
be able to write

x = 0.a1...an44...44b1b2...

where A = a1...an ∈ Z+ is an integer that doesn't contain a hundred consec-
utive 4s and with an ̸= 4, and B = 0.b1b2b3... is an arbitrary number in [0, 1].
In other words, there exists a n ∈ Z+ such that

x = 10−(n+100)(10100A+ 44...44 +B)

If we denote by F the integer composed of a hundred consecutive 4s, then we
get

x = 10−(n+100)(10100A+ F +B)

Hence,
x ∈ 10−(n+100)(10100A+ F + [0, 1])

For a given n ∈ Z+, let's denote by An the set of integers between 0 and
10n+1 − 1 (i.e., the set of integers with n digits) such that the elements don't
contain a hundred consecutive 4s and where the digit representing the unit is
not a 4. Then, by our previous observation, we have

x ∈
∞⋃
n=1

10−(n+100)(10100An + F + [0, 1])

In fact, it is easy to see that

S =
∞⋃
n=1

10−(n+100)(10100An + F + [0, 1])

In this form, it will be actually easier to prove that S is a Borel set and �nd
its Lebesgue measure.
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2E Convergence of Measurable Functions

hi..
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