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Preface

The goal of this document is to share my personal solutions to the exercises of
Representation Theory of Finite Groups by Benjamin Steinberg during my reading.

As a disclaimer, the solutions are not unique and there will probably be better
or more optimized solutions than mine. Feel free to correct me or ask me anything
about the content of this document at the following address : samy.lahloukamal@mcgill.ca
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Chapter 1

Introduction

|No exercises in this chapter.|



Chapter 2

Review of Linear Algebra

Exercise 2.1
Suppose that A, B € M,,(C) are commuting matrices, i.e., AB = BA. Let V) be an
eigenspace of A. Show that V) is B-invariant.

Solution
Recall that
Vi={veC": Av = v}

where A € C satisfies Au = Au for some v € C*\ {0}. Let v € V) and let’s show
that Bv € V). Notice that

A(Bv) = BAv
= BM\v
= \(Bv)

Thus, by definition, Bv € V). It follows that V) is B-invariant.

Exercise 2.2
Let V be an n-dimensional vector space and B a basis. Prove that the map
F :End(V) — M,(C) given by F(T) = [T]p is an isomorphism of unital rings.

Solution

Recall that a unital ring is simply a ring with a multiplicative identity. Moreover,
denote the elements in B by by, by, ..., b,. Let’s first show that F' is a ring homo-
morphism, i.e., F' preserves addition, multiplication (composition in End(V)) and
sends the identity transformation to the identity matrix.

e (Preserves Addition) Let 77,75 € End(V) and consider the matrices [T}]g,
[T5]p and [T1 + Ty]p. For all j € {1,...,n}, we can write

Thb; = Z a;;b; and Tob; = Zﬁijbi
=1 i=1

for some scalars aj, 3;; € C with 1 < 4,5 < n. It follows by definition that
[Th]p = (ayj) and T3] = (B;;). Moreover, since for all j € {1,...,n} we have

n

(Ty + T2)b; = Z a;;b; + Z Bijbi = Z(aij + Bi)b;
=1 =1

i=1

4
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then we get

F(I+T) =T+ T3)s
(aij + Bij)
(aij) + (Bij)
F(T) + F(Ty)

which proves that F' preserves addition.

e (Preserves Multiplication) Let 77,75 € End(V). Recall that multiplication

in End(V) is defined as the composition of functions, and multiplication in
M,,(C) is defined by the following formula:

(aij) x (bi;) = (Z az‘kbkj>

k=1

For all j € {1,...,n}, we can write

Thb; = Z a;;b; and Tob; = Zﬁijbi
=1 i=1

for some scalars aj, 3;; € C with 1 < 4,5 < n. It follows by definition that
[Th]p = (ayj) and T3] = (B;;). Moreover, since for all j € {1,...,n} we have

(Tl o Tg)bj == Tl(Tgbj)

=T Z Br;bk
k=1
= Z Br;T1by
k=1
= Z B (Z aikbi>
k=1 i=1
=3 Brjcurb;

k=1 i=1

= i (i aikﬁfw) bi

i=1 k=1

It follows that [T1 o Ty]p = (D p_; @ikBkj). Therefore, we get
F(TlTQ) = [Tl 9] TQ]B

= (Z Oéikﬁkj)
k=1

= (aij)(Bi)
= [Th]g[1%]B
= F(T1)F(T2)

Therefore, F' preserves the multiplication.
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e Consider now the identity map idy : V — V which is the multiplicative
identity in End(V'). Let’s show that F(idy) = I,,. To do so, notice that for all
j €{1,...,n}, we have

idvbj = bj = Zaijbi
=1

where o;; = 1 when ¢ = j and a;; = 0 otherwise. It follows that [idy|g = (ay;).
Therefore, the matrix [idy|p is equal to zero for all of its entries except on the
diagonal where it is equal to one. It follows that

F(idy) = [idy]p = I,

Now that we showed that F'is a ring homomorphism, we need to show that it is
also a bijection:

e (Injectivity) Let 77 and T3 be linear maps from V' to V such that F(T}) =
F(Ty), then [T1]p = [T3]p. Recall [11]p and [T3]p are defined as (o;) and
(Bij)ij respectively where

lej = Z Oéijbi and Tij = Zﬂljbl
=1 i=1

for all 4,7 € {1,...,n}. Since [T1]p = [T3]p, then a;; = B;; for all i,j €
{1,...,n}. Tt follows that T1b; = Tob; for all i € {1,...,n}. But since any
function from B to V can be uniquely extended to a linear map from V to V,
then T} = T,. Therefore, F' is injective.

e (Surjectivity) Let («;;) € M, (C) and consider the map defined by

Tbj = i Ckijbi
=1

for all 7,5 € {1,...,n}. Since any map from B to V can be uniquely extended
to a linear map from V to V, then T' € End(V). Moreover, by construction,
F(T) = [T)p = (cvj)ij- Therefore, F'is surjective.

Since F'is a bijective ring homomorphism, then F' is a ring isomorphism.

Exercise 2.3

Let V' be an inner product space and let W < V be a subspace. Let v € V and
define v € W as in the proof of Proposition 2.2.3. Prove that if w € W with w # 0,
then ||v —0|| < |lv —w||. Deduce that v is independent of the choice of orthonormal
basis for W. It is called the orthonormal projection of v onto W.

Solution
TODO

Exercise 2.4
Prove that (AB)* = B*A*.
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Solution
If we write A = (a;;) and B = (b;;), then

AB = (aij)(bij) = (Z aikbkj)

k=1
It follows that

k=1 k=1
Similarly, since A* = (a;;) and B* = (b;;), then

B*A* = (ay;)(bj;) = <me a]k)

Therefore, combining the last two results gives us (AB)* = B*A*.

Exercise 2.5
Prove that Tr(AB) = Tr(BA).

Solution
If we write A = (a;);; and B = (b;;);j, then

AB = (aw)(blj) = <Z aikbkj>

k=1
It follows that

= Z Z ;b = Z Z briaik

i=1 k=1 k=1 i=1
Since the variables ¢ and k are just dummy variables, then we can interchange the
variable names without changing the value of the sum (replace the i’s by k’s and
the k’s by ¢’s). From this, we get:

= Z Z bk Qg

i=1 k=1

Similarly, since we have

BA = (b;;)(a;;) <Z buﬂk;)

then

n n

i=1 k=1
Therefore, Tr(AB) = Tr(BA).

Exercise 2.6
TODO
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Exercise 2.7
TODO

Exercise 2.8
TODO

Exercise 2.9
TODO



Chapter 3

Basic Definitions and First Examples

Exercise 3.1
Let ¢ : Dy — GL3(C) be the representation given by

& N
Ky _ |7 0 k|0 (=9)
where r is rotation counterclocwise by 7/2 and s is reflection over the z-axis. Prove

that ¢ is irreducible.

Solution
By Proposition 3.1.19, it suffices to show that there is no common eigenvector to all
matrices in the image of ¢. In particular, it suffices to show that

0 0 —
A=p(r)= {O —i] and B = p(sr)= ll 0 } =B
have no common eigenvector. Let’s compute the characteristic polynomial of B:

pp(x) = det(xl, — B)

It follows that the eigenvalues of B are precisely 1 and -1. Let’s compute their
respective eigenspaces:

Vi={veC?®: Bu=u}
TN L [

= {(v1,v2) € C* : vy = —ivy and vy = ivy}
= {(vl,v ) S C2 LU = —iUQ}

e[l

Similarly, we find
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l
1

2 B el
A= 2] =[] eeld

Thus, both vectors are not eigenvectors of A. Therefore, ¢ must be irreducible.

Hence, it suffices to show that [_12] and [ } are not eigenvectors of A. To do so,

notice that

Exercise 3.2
Let ¢ : G — GL(V) be equivalent to an irreducible representation. Then ¢ is irre-
ducible.

Solution
Let ¢ : G — GL(W) be an irreducible representation of G' such that ¢ ~ 1, then
there exists a vector space isomorphism 7' : V' — W such that Tp, = ¢,/T for all
g € G. Suppose by contradiction that ¢ is not an irreducible representation, then
there exists a proper G-invariant subspace Vy < V different than {0}.

Consider the set Wy = {Tv : v € Vj}. Let’s prove that W, is a subspace of WW.
By linearity, for all o, 5 € C and v, w € V{, we have

aTv + fTw = T(aw + fw)

Since Vj is a subspace, then it is closed under linear combinations. Hence, av+fw €
V. It follows that aTv 4+ fTw € Wy. Thus, Wy is a subspace of W.

Let’s show that Wy # {0}. Since V # {0}, then there exists a non-zero vector
v € Vg. It follows that Tv € W,. Since T is an isomorphism, then Tv is non-zero as
well. Thus, Wy # {0}.

Let’s show that W, is a proper subspace of W. Since Vj is a proper subspace of
V, then there is a vector v € V such that v ¢ V. Consider the vector w =Tv € W.
If w € Vj, then there exists a vy € Vj) such that w = Twvy. Hence, Tv = Tvy. By
injectivity of T', there v = vy € Vj. A contradiction. Hence, w ¢ W. Thus, Wy is a
proper subspace of W.

Finally, let’s show that W, is G-invariant. Let ¢ € G and w € W, then there is
a v €V such that w = T'v. Moreover, since Vj is G-invariant, then ¢ v € V. Thus,

Yow =P, Tv =Tpv € W

Hence, W, is G-invariant.

However, this is a contradiction because what we showed is that W has a proper
G-invariant subspace Wy # {0}. This contradicts the fact that 1 is irreducible.
Therefore, ¢ is irreducible.

Exercise 3.3
Let ¢,v : G — C* be one-dimensional representations. Show that ¢ is equivalent
to ¢ if and only if p = .
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Solution
( <= ) Suppose that ¢ = 1) and consider the identity map 7': C — C. Since T is a
vector space isomorphism and

Ty = 1T

for all g € G, then it follows that ¢ is equivalent to .
( = ) Suppose that ¢ is equivalent to 1, then there exists a vector space isomor-
phism 7" : C — C such that

T, =T

for all ¢ € GG. However, notice that any isomorphism from C to C is simply a
multiplication by a scalar. To understand why, let & = 7'(1) and let x € C, then

T(x)=T(x-1)=2T(1) = az

Moreover, o must be non-zero by injectivity of 7. Hence, by commutativity in C,
given a g € G, we get

Ty =1v,T = apy =y«
= apy = oty
= ng = ’(pg

Since it holds for all g € G, then ¢ = 1.

Exercise 3.4
Let ¢ : G — C* be a representation. Suppose that g € G has order n.

1. Show that ¢(g) is an nth-root of unity (i.e., a solution to the equation 2" = 1).
2. Construct n inequivalent one-dimensional representations Z/nZ — C*.

3. Explain why your representations are the only possible one-dimensional rep-
resentations.

Solution

1. Since ¢ is a group homomorphism, then the identity 14 in g is mapped to
1 € C*. Moreover, we can show by induction on k that

for all k£ € Z. By plugging-in k = n, we get

p(9)" = ¢(g") = ¢(la) =1
Therefore, p(g) is a nth-root of unity.

2. Consider the mappings ¢y, : Z/nZ — C* defined by

_ 627rimlc/n

wi([m])
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where k& = 1,...,n. First, let’s show that each ¢ is well-defined. Let k €
{1,...,n} and let [my], [ma] € Z/nZ such that [m,] = [mo], then there exists a
t € 7Z such that mo = mq + tn. It follows that

__ 2mimak/n

pi([ms]) = e
_ 6271'1'(m1 +tn)k/n

_ e(27rim1 k/n)+(2mitnk/n)

2mimik/n | 2mitk

=€ €

= ¢r([ma])

Therefore, the mappings are all well-defined. Let’s now show that each map-
ping is a representation by showing that it is a homomorphism. Let k €
{1,...,n} and [m], [me] € Z/nZ, then

i ([ma] + [ma]) = @r([my + mol)

— 627Ti(m1+m2)k:/n

— e(2m’m1 k/n)+(2mimak/n)

— 627rim1k/n€2m'm2k/n
= @r([ma])pr([m2])

Therefore, each ¢y is a representation. To show that these n representations
are inequivalent, recall that they are all distinct since they all map [1] to
a different element. Using exercise 3.3, it directly follows that they are all
inequivalent since they are not strictly equal.

3. First, recall that any one-dimensional representation of G is equivalent to a
representation ¢ : G — C*. Hence, it suffices to only consider the representa-
tions ¢ : Z/nZ — C*. Let ¢ : Z/nZ — C* be an arbitrary representation of
Z/nZ. Since [1] € Z/nZ has order n, then by part 1., ¢([1]) must be a nth
root of unity. Hence, there exists a k € {1,...,n} such that

p((1]) = e2ikim

From this, since ¢ is a group homomorphism, then we can deduce that for all
[m] € Z/nZ, we have

p([m]) = ¢(m - [1])
= (1"
_ (627rik/n)m

_ 627rimk:/n
= er([m])

Since it holds for all [m]| € Z/nZ, then ¢ = ¢i. Therefore, the representations
described in previous part are the only possible one-dimensional representa-
tions of Z/nZ.
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Exercise 3.5
Let ¢ : G — GL(V) be a representation of a finite group G. Define the fized
subspace

VY ={veV|pu=nuvVgeG}.
1. Show that V& is a G-invariant subspace.

2. Show that

1
@ Z YL € VG
heG

for allv e V.

3. Show that if v € V¥, then

5. Show that P? = P.
6. Conclude Tr(P) is the rank of P.

7. Conclude

) 1
dim V¢ = @l Z Tr(py).
heG

Solution

1. First, for completeness, let’s prove that V¢ is a subspace of V. It is non-empty
because the zero vector is fixed by every linear map on V. Moreover, given
any a,3 € C, u,v € V¥ and g € G, we get

q(au+ v) = apgu + Bpgv = au+ Pu

which shows that au + Bv € VY. Thus, V¢ is a subspace since it is a non-
empty subset of V' that it closed under linear combinations.

Now, simply notice that by definition, for any v € V¢ and ¢ € G, we have
¢,v =v. Thus, V% is G-invariant.

2. Let v € V and consider the element z = |—Cl;| Y nec wrv € V. To show that
x € VY let g € G be arbitrary and let’s show that ¢, = z. By linearity of
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¢, and using the fact that ¢ is a homomorphism, we get

1
PgT = %|—G| }; Pnv

1
G

heG

1
= |_(;| Zgoghv

heG

Notice that the sum is taken over h € G but the only time it is used is in the
subscript ¢g4,. Since the function h — gh is a bijection from G to G and the
sum is finite, then this sum is simply a rearrangement of the sum in which we
replace gh by h. Hence,

1
Pgl = |_G| Z PghU

heG
1
= |_G] Z PYrv
heG
=z

Since it holds for all g € G, then z € V©.
3. To do so, let v € V& and recall that by definition, p,v = v for all h € G-
1 1 1
— Y pp=—» v=—|Glv=20
EP AT PITe!
which proves the desired formula.

4. Define the operator

1
P:@ZS%

heG

We already now from part 2. of this question that Im(P) C V. Moreover,
we know from part 3. of this question that any element of V¢ is in the image
of P since v = Pv for all v € V. Thus, Im(P) = V. Tt follows that the rank
of P is dim V¢,

5. First, since the image of P is V¢, then
P2 = P‘VG oP

But we already know that P acts as the identity map on V. In other words:
Plye = idye. Therefore,

P?=PlycoP =idyaoP =P
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6. Let B = {by,by,...,b,} be a basis for V¢ and extend it to a basis B’ =
{b1, ... by, by, .. 0} of V where n = dim V¢ and n + m = dim V. Consider
the matrix representation M = [P|p of P in the basis B’. Notice that the
first n columns of the matrix are simply the vectors e; € C" where 1 <1 < n
since P acts as the identity on V. If we write M = (my;)1<i j<n+m, then the
last sentence implies that m; = 1 for all 1 < i < n.

Moreover, notice that Pb; € V¢ hence, its representation in the B’ basis
only involves the vectors {by,...,b,}. Again, this translates to m; = 0 for all
n+1<i<n+m.
Therefore, since the trace of a transformation is the trace of any of its matrix
representation, then

Tr(P) = Tr(M)

n+m

= E M5
n+m
- E mZZ + E mZZ

i=n+1

n+m

_Zl+ > o

i=n+1
:n+0
= dim V¢

7. Since the trace is linear, then

1
Tr(P)="Tr (@ ngh) € ZTr ©n)

heG heG

which is the desired result.

Exercise 3.6
Let ¢ : G — GL,(C) be a representation.

1. Show that setting ¢, = @, provides a representation ¢ : G — GL,(C). It is
called the conjugate representation. Give an example showing that ¢ and
do not have to be equivalent.

2. Let x : G — C* be a degree 1 representation of G. Define a map ¢X : G —
GL,(C) by ¢} = x(g)py. Show that X is a representation. Give an example
showing that ¢ and ¢X do not have to be equivalent.

Solution

1. To show that the conjugate representation is indeed a representation, we sim-
ply need to show that it is a homomorphism. To do so, let g, h € GG and let’s
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show that Vg1, = 1g,. Let v € V, then
(Ygtn) (v) = y(

4
=
<
>
—~

e
~

Since it holds for all v € V, then ¥ 1, = 1y,. Therefore, ¢ is a representation.
An example of ¢ 74 1) can be obtained as follows. Take ¢ : Z — C* given by
n +— ", then we get ¢ : Z — C* with n +— (—¢)". If we plug-in n = 1, we can
see that ¢ # . It follows that ¢ L ).

2. As for the previous part, we simply need to show that ¢X is a homomorphism.
To do so, let g,h € G and v € V, then

ey (V)es (V)
)eg(0)x(h)pn(v)
IX(h)@g(v)pn(v)
h)@gh(v)

gh<U)

(05%n)(v)

(g
(g
(g

I
g <X X X

Since it holds for all v € V, then Xy = ¢, . Therefore, X is a representa-
tion.

An example of ¢ % pX can be obtained as follows. Take ¢ : Z — C* given
by n +— i" and x : Z — C* given by n — (—i)", then we get X : Z — C*
with n — 1. If we plug-in n = 1, we can see that ¢ # 1. It follows that ¢ % 1.

Exercise 3.7

Give a bijection between the unitary, degree one representations of Z and elements
of T.

Solution

To make things clear, consider the set URep(Z,1) which denotes all the unitary
degree one representations of Z. If we make no distinction between equivalent rep-
resentations, then we need to find a bijection between R = URep(Z,1)/ ~ and T.
Notice that each equivalence class £ in R has a unique representative ¢p : Z — C*.
Thus, consider the function f : R — T defined by f(E) = ¢gr(1). Notice that f is
well defined since g is unique for all £ € R.

First, let’s show that it is injective. To do so, let Ey, Fs € R such that f(E;) =
f(E2), then by definition, pg, (1) = ¢g,(1). Since ¢g, and pg, are homomorphisms,
then for all n € Z:

Since the domains of both pg, and ¢g, is Z, then ¢g, = ¢g,. Hence, op, ~ ¢g,.
This implies that E; and E5 have a common representative so it follows that £ =
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Es. Thus, f is injective.

Let’s now show that f is surjective. Let ¢ € T and consider the map ¢ : Z — C*
defined by op(n) = €. We first need to show that ¢ € R. To do so, notice
that it can easily be shown that ¢ is a homomorphism. Hence, ¢ is a degree one
representation of Z that it is unitary, notice that for all ay, s € C and n € Z, we
have

0

(p(n)ar, p(n)ar) = <€i€n0617€i "ay)

ion aq eign s

— ezene—zﬁnala—Q

= 10

= <Oél, a2>

Thus, ¢ is a unitary degree one representation, it follows that ¢ must be in an
equivalence class £ € R. Moreover, ¢ must be the unique representation in E with
codomain C*, i.e., ¢ = ¢. Thus,

f(E) =¢p(1)
= (1)
— it
Thus, f is surjective since it holds for all e € T. Therefore, f is a bijection from
the unitary degree one representations up to equivalence to the set T.

Exercise 3.8

1. Let ¢ : G — GL3(C) be a representation of a finite group. Show that ¢ is
irreducible if and only if there is no common eigenvector for the matrices ¢,
with g € G.

2. Give an example of a finite group G and a decomposable representation ¢ :
G — GL4(C) such that ¢, with g € G do not have a common eigenvector.

Solution

1. Let’s prove the contrapositive instead: ¢ is not irreducible if and only if there
is a common eigenvector for the matrices ¢, with g € G.
( = ) Suppose that ¢ is not irreducible, then by Corollary 3.2.5, ¢ is decom-
posable. Hence, there must be non-trivial G-invariant subspaces Vi, Vo < V
such that V = V] & V5. Since

3=dimV =dimV; & V5, = dim V; + dim V%,

then either V; or V5 has dimension 1. Without loss of generality, suppose that
Vi has dimension 1, then there is a non-zero vector v € C? such that V; = Cu.
Since Vj is G-invariant, then for all g € G and v € Cu, we have p,v € Cu. In
particular, if we take v = u, we get that for all g € G, p,u € Cu so pu = A,
where )\, is a complex constant that depends on g. The previous statement
can be restated as follows: for all g € G, the vector u is an eigenvector for ¢,.
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It follows that ¢, with g € G have a common eigenvector.

( <= ) Suppose that there is a common eigenvector for the matrices ¢, with
g € G. We can rephrase the previous sentence by saying that there exists a
non-zero vector v € V such that for all g € G, there is a constant \; € C
satisfying g u = Aju. Consider the subspace W = Cu, let’s show that W is
G-invariant. To do so, let ¢ € G and au € W, then

P = apyu = algu € W

Thus, since W has dimension 1, then ¢ has a non-trivial proper G-invariant
subspace. It follows that ¢ is not irreducible.

2. Consider the representation ¢ : Dy — G Lo(C) described by

& Nk
=1y Sl o=k G
We know from Exercise 1 of this chapter that the matrices ¢, with ¢ € Dy
have no common eigenvector. Consider now the representation ¢ = ¢ @ ¢.
Suppose that the matrices ¢, with g € D4 have a common eigenvector, then
there exists a non-zero vector u € C? x C? such that for all g € Dy, there exists
a constant A\, € C such that ,u = A\ju. If we write u as (uy, uz) where both
u; and us are two vectors in C?, then one of u; and us must be non-zero since
u is non-zero. Suppose without loss of generality that u, is non-zero. Then we
get that for all g € Dy, there is a constant A, such that

Ygu = Agu = (g D pg)(u1,uz) = Ag(u1, us)
= (@gul, SOgUQ) = ()‘gulv >\gu2)
— PgU1 = )\gul

In other words, there is a non-zero vector u; € C? such that for all ¢ € D, there
is a A\, € C satisfying ¢ u; = A\yu;. But this is a contradiction since it would
imply that the matrices ¢, with g € D, have a common eigenvector. Thus,
by contradiction, the matrices v, with g € D, have no common eigenvector.
Notice that v is equivalent to a representation ¢’ : Dy — G L4(C) so the same
conclusion holds for this new representation.



Chapter 4

Character Theory and the
Orthogonality Relations

Exercise 4.1
TODO
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