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Preface

The goal of this document is to share my personal solutions to the exercises of
Representation Theory of Finite Groups by Benjamin Steinberg during my reading.

As a disclaimer, the solutions are not unique and there will probably be better
or more optimized solutions than mine. Feel free to correct me or ask me anything
about the content of this document at the following address : samy.lahloukamal@mcgill.ca
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Chapter 1

Introduction

[No exercises in this chapter.]
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Chapter 2

Review of Linear Algebra

Exercise 2.1

Suppose that A,B ∈Mn(C) are commuting matrices, i.e., AB = BA. Let Vλ be an
eigenspace of A. Show that Vλ is B-invariant.

Solution

Recall that
Vλ = {v ∈ Cn : Av = λv}

where λ ∈ C satis�es Au = λu for some u ∈ Cn \ {0}. Let v ∈ Vλ and let's show
that Bv ∈ Vλ. Notice that

A(Bv) = BAv

= Bλv

= λ(Bv)

Thus, by de�nition, Bv ∈ Vλ. It follows that Vλ is B-invariant.

Exercise 2.2

Let V be an n-dimensional vector space and B a basis. Prove that the map
F : End(V ) →Mn(C) given by F (T ) = [T ]B is an isomorphism of unital rings.

Solution

Recall that a unital ring is simply a ring with a multiplicative identity. Moreover,
denote the elements in B by b1, b2, ..., bn. Let's �rst show that F is a ring homo-
morphism, i.e., F preserves addition, multiplication (composition in End(V )) and
sends the identity transformation to the identity matrix.

� (Preserves Addition) Let T1, T2 ∈ End(V ) and consider the matrices [T1]B,
[T2]B and [T1 + T2]B. For all j ∈ {1, ..., n}, we can write

T1bj =
n∑

i=1

αijbi and T2bj =
n∑

i=1

βijbi

for some scalars αij, βij ∈ C with 1 ≤ i, j ≤ n. It follows by de�nition that
[T1]B = (αij) and [T2]B = (βij). Moreover, since for all j ∈ {1, ..., n} we have

(T1 + T2)bj =
n∑

i=1

αijbi +
n∑

i=1

βijbi =
n∑

i=1

(αij + βij)bi

4
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then we get

F (T1 + T2) = [T1 + T2]B

= (αij + βij)

= (αij) + (βij)

= F (T1) + F (T2)

which proves that F preserves addition.

� (Preserves Multiplication) Let T1, T2 ∈ End(V ). Recall that multiplication
in End(V ) is de�ned as the composition of functions, and multiplication in
Mn(C) is de�ned by the following formula:

(aij)× (bij) =

(
n∑

k=1

aikbkj

)
For all j ∈ {1, ..., n}, we can write

T1bj =
n∑

i=1

αijbi and T2bj =
n∑

i=1

βijbi

for some scalars αij, βij ∈ C with 1 ≤ i, j ≤ n. It follows by de�nition that
[T1]B = (αij) and [T2]B = (βij). Moreover, since for all j ∈ {1, ..., n} we have

(T1 ◦ T2)bj = T1(T2bj)

= T1

n∑
k=1

βkjbk

=
n∑

k=1

βkjT1bk

=
n∑

k=1

βkj

(
n∑

i=1

αikbi

)

=
n∑

k=1

n∑
i=1

βkjαikbi

=
n∑

i=1

(
n∑

k=1

αikβkj

)
bi

It follows that [T1 ◦ T2]B = (
∑n

k=1 αikβkj). Therefore, we get

F (T1T2) = [T1 ◦ T2]B

=

(
n∑

k=1

αikβkj

)
= (αij)(βij)

= [T1]B[T2]B

= F (T1)F (T2)

Therefore, F preserves the multiplication.
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� Consider now the identity map idV : V → V which is the multiplicative
identity in End(V ). Let's show that F (idV ) = In. To do so, notice that for all
j ∈ {1, ..., n}, we have

idV bj = bj =
n∑

i=1

αijbi

where αij = 1 when i = j and αij = 0 otherwise. It follows that [idV ]B = (αij).
Therefore, the matrix [idV ]B is equal to zero for all of its entries except on the
diagonal where it is equal to one. It follows that

F (idV ) = [idV ]B = In

Now that we showed that F is a ring homomorphism, we need to show that it is
also a bijection:

� (Injectivity) Let T1 and T2 be linear maps from V to V such that F (T1) =
F (T2), then [T1]B = [T2]B. Recall [T1]B and [T2]B are de�ned as (αij) and
(βij)ij respectively where

T1bj =
n∑

i=1

αijbi and T2bj =
n∑

i=1

βijbi

for all i, j ∈ {1, ..., n}. Since [T1]B = [T2]B, then αij = βij for all i, j ∈
{1, ..., n}. It follows that T1bi = T2bi for all i ∈ {1, ..., n}. But since any
function from B to V can be uniquely extended to a linear map from V to V ,
then T1 = T2. Therefore, F is injective.

� (Surjectivity) Let (αij) ∈Mn(C) and consider the map de�ned by

Tbj =
n∑

i=1

αijbi

for all i, j ∈ {1, ..., n}. Since any map from B to V can be uniquely extended
to a linear map from V to V , then T ∈ End(V ). Moreover, by construction,
F (T ) = [T ]B = (αij)ij. Therefore, F is surjective.

Since F is a bijective ring homomorphism, then F is a ring isomorphism.

Exercise 2.3

Let V be an inner product space and let W ≤ V be a subspace. Let v ∈ V and
de�ne v̂ ∈ W as in the proof of Proposition 2.2.3. Prove that if w ∈ W with w ̸= v̂,
then ∥v− v̂∥ < ∥v−w∥. Deduce that v̂ is independent of the choice of orthonormal
basis for W . It is called the orthonormal projection of v onto W .

Solution

TODO

Exercise 2.4

Prove that (AB)∗ = B∗A∗.
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Solution

If we write A = (aij) and B = (bij), then

AB = (aij)(bij) =

(
n∑

k=1

aikbkj

)
It follows that

(AB)∗ =

(
n∑

k=1

aikbkj

)∗

=

(
n∑

k=1

ajk · bki

)
Similarly, since A∗ = (aji) and B

∗ = (bji), then

B∗A∗ = (aji)(bji) =

(
n∑

k=1

bki · ajk

)
Therefore, combining the last two results gives us (AB)∗ = B∗A∗.

Exercise 2.5

Prove that Tr(AB) = Tr(BA).

Solution

If we write A = (aij)ij and B = (bij)ij, then

AB = (aij)(bij) =

(
n∑

k=1

aikbkj

)
It follows that

Tr(AB) =
n∑

i=1

n∑
k=1

aikbki =
n∑

k=1

n∑
i=1

bkiaik

Since the variables i and k are just dummy variables, then we can interchange the
variable names without changing the value of the sum (replace the i's by k's and
the k's by i's). From this, we get:

Tr(AB) =
n∑

i=1

n∑
k=1

bikaki

Similarly, since we have

BA = (bij)(aij) =

(
n∑

k=1

bikakj

)
then

Tr(BA) =
n∑

i=1

n∑
k=1

bikaki

Therefore, Tr(AB) = Tr(BA).

Exercise 2.6

TODO
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Exercise 2.7

TODO

Exercise 2.8

TODO

Exercise 2.9

TODO



Chapter 3

Basic De�nitions and First Examples

Exercise 3.1

Let φ : D4 → GL2(C) be the representation given by

φ(rk) =

[
ik 0
0 (−i)k

]
, φ(srk) =

[
0 (−i)k
ik 0

]
where r is rotation counterclocwise by π/2 and s is re�ection over the x-axis. Prove
that φ is irreducible.

Solution

By Proposition 3.1.19, it su�ces to show that there is no common eigenvector to all
matrices in the image of φ. In particular, it su�ces to show that

A = φ(r) =

[
i 0
0 −i

]
and B = φ(sr) =

[
0 −i
i 0

]
= B

have no common eigenvector. Let's compute the characteristic polynomial of B:

pB(x) = det(xI2 −B)

= det

([
x i
−i x

])
= x2 − 1

= (x− 1)(x+ 1)

It follows that the eigenvalues of B are precisely 1 and -1. Let's compute their
respective eigenspaces:

V1 = {v ∈ C2 : Bv = v}

= {(v1, v2) ∈ C2 :

[
0 −i
i 0

] [
v1
v2

]
=

[
v1
v2

]
}

= {(v1, v2) ∈ C2 : v1 = −iv2 and v2 = iv1}
= {(v1, v2) ∈ C2 : v1 = −iv2}

= C
[
−i
1

]
Similarly, we �nd

V−1 = C
[
i
1

]
9
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Hence, it su�ces to show that

[
−i
1

]
and

[
i
1

]
are not eigenvectors of A. To do so,

notice that

A

[
−i
1

]
=

[
i 0
0 −i

] [
−i
1

]
=

[
1
−i

]
/∈ C

[
−i
1

]
and

A

[
i
1

]
=

[
i 0
0 −i

] [
i
1

]
=

[
−1
−i

]
/∈ C

[
i
1

]
Thus, both vectors are not eigenvectors of A. Therefore, φ must be irreducible.

Exercise 3.2

Let φ : G → GL(V ) be equivalent to an irreducible representation. Then φ is irre-
ducible.

Solution

Let ψ : G → GL(W ) be an irreducible representation of G such that φ ∼ ψ, then
there exists a vector space isomorphism T : V → W such that Tφg = ψgT for all
g ∈ G. Suppose by contradiction that φ is not an irreducible representation, then
there exists a proper G-invariant subspace V0 ≤ V di�erent than {0}.

Consider the set W0 = {Tv : v ∈ V0}. Let's prove that W0 is a subspace of W .
By linearity, for all α, β ∈ C and v, w ∈ V0, we have

αTv + βTw = T (αv + βw)

Since V0 is a subspace, then it is closed under linear combinations. Hence, αv+βw ∈
V0. It follows that αTv + βTw ∈ W0. Thus, W0 is a subspace of W .

Let's show that W0 ̸= {0}. Since V0 ̸= {0}, then there exists a non-zero vector
v ∈ V0. It follows that Tv ∈ W0. Since T is an isomorphism, then Tv is non-zero as
well. Thus, W0 ̸= {0}.

Let's show that W0 is a proper subspace of W . Since V0 is a proper subspace of
V , then there is a vector v ∈ V such that v /∈ V0. Consider the vector w = Tv ∈ W .
If w ∈ V0, then there exists a v0 ∈ V0 such that w = Tv0. Hence, Tv = Tv0. By
injectivity of T , there v = v0 ∈ V0. A contradiction. Hence, w /∈ W . Thus, W0 is a
proper subspace of W .

Finally, let's show that W0 is G-invariant. Let g ∈ G and w ∈ W0, then there is
a v ∈ V0 such that w = Tv. Moreover, since V0 is G-invariant, then φgv ∈ V0. Thus,

ψgw = ψgTv = Tφgv ∈ W0

Hence, W0 is G-invariant.
However, this is a contradiction because what we showed is that W has a proper

G-invariant subspace W0 ̸= {0}. This contradicts the fact that ψ is irreducible.
Therefore, φ is irreducible.

Exercise 3.3

Let φ, ψ : G → C∗ be one-dimensional representations. Show that φ is equivalent
to ψ if and only if φ = ψ.
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Solution

( ⇐= ) Suppose that φ = ψ and consider the identity map T : C → C. Since T is a
vector space isomorphism and

Tφg = ψgT

for all g ∈ G, then it follows that φ is equivalent to ψ.
( =⇒ ) Suppose that φ is equivalent to ψ, then there exists a vector space isomor-
phism T : C → C such that

Tφg = ψgT

for all g ∈ G. However, notice that any isomorphism from C to C is simply a
multiplication by a scalar. To understand why, let α = T (1) and let x ∈ C, then

T (x) = T (x · 1) = xT (1) = αx

Moreover, α must be non-zero by injectivity of T . Hence, by commutativity in C,
given a g ∈ G, we get

Tφg = ψgT = αφg = ψgα

= αφg = αψg

= φg = ψg

Since it holds for all g ∈ G, then φ = ψ.

Exercise 3.4

Let φ : G→ C∗ be a representation. Suppose that g ∈ G has order n.

1. Show that φ(g) is an nth-root of unity (i.e., a solution to the equation zn = 1).

2. Construct n inequivalent one-dimensional representations Z/nZ → C∗.

3. Explain why your representations are the only possible one-dimensional rep-
resentations.

Solution

1. Since φ is a group homomorphism, then the identity 1G in g is mapped to
1 ∈ C∗. Moreover, we can show by induction on k that

φ(gk) = φ(g)k

for all k ∈ Z. By plugging-in k = n, we get

φ(g)n = φ(gn) = φ(1G) = 1

Therefore, φ(g) is a nth-root of unity.

2. Consider the mappings φk : Z/nZ → C∗ de�ned by

φk([m]) = e2πimk/n
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where k = 1, ..., n. First, let's show that each φk is well-de�ned. Let k ∈
{1, ..., n} and let [m1], [m2] ∈ Z/nZ such that [m1] = [m2], then there exists a
t ∈ Z such that m2 = m1 + tn. It follows that

φk([m2]) = e2πim2k/n

= e2πi(m1+tn)k/n

= e(2πim1k/n)+(2πitnk/n)

= e2πim1k/n · e2πitk

= φk([m1])

Therefore, the mappings are all well-de�ned. Let's now show that each map-
ping is a representation by showing that it is a homomorphism. Let k ∈
{1, ..., n} and [m1], [m2] ∈ Z/nZ, then

φk([m1] + [m2]) = φk([m1 +m2])

= e2πi(m1+m2)k/n

= e(2πim1k/n)+(2πim2k/n)

= e2πim1k/ne2πim2k/n

= φk([m1])φk([m2])

Therefore, each φk is a representation. To show that these n representations
are inequivalent, recall that they are all distinct since they all map [1] to
a di�erent element. Using exercise 3.3, it directly follows that they are all
inequivalent since they are not strictly equal.

3. First, recall that any one-dimensional representation of G is equivalent to a
representation φ : G→ C∗. Hence, it su�ces to only consider the representa-
tions φ : Z/nZ → C∗. Let φ : Z/nZ → C∗ be an arbitrary representation of
Z/nZ. Since [1] ∈ Z/nZ has order n, then by part 1., φ([1]) must be a nth
root of unity. Hence, there exists a k ∈ {1, ..., n} such that

φ([1]) = e2πik/n

From this, since φ is a group homomorphism, then we can deduce that for all
[m] ∈ Z/nZ, we have

φ([m]) = φ(m · [1])
= φ([1])m

= (e2πik/n)m

= e2πimk/n

= φk([m])

Since it holds for all [m] ∈ Z/nZ, then φ = φk. Therefore, the representations
described in previous part are the only possible one-dimensional representa-
tions of Z/nZ.
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Exercise 3.5

Let φ : G → GL(V ) be a representation of a �nite group G. De�ne the �xed

subspace

V G = {v ∈ V |φgv = v,∀g ∈ G}.

1. Show that V G is a G-invariant subspace.

2. Show that
1

|G|
∑
h∈G

φhv ∈ V G

for all v ∈ V .

3. Show that if v ∈ V G, then

1

|G|
∑
h∈G

φhv = v.

4. Conclude dimV G is the rank of the operator

P =
1

|G|
∑
h∈G

φh.

5. Show that P 2 = P .

6. Conclude Tr(P ) is the rank of P .

7. Conclude

dimV G =
1

|G|
∑
h∈G

Tr(φg).

Solution

1. First, for completeness, let's prove that V G is a subspace of V . It is non-empty
because the zero vector is �xed by every linear map on V . Moreover, given
any α, β ∈ C, u, v ∈ V G and g ∈ G, we get

φg(αu+ βv) = αφgu+ βφgv = αu+ βv

which shows that αu + βv ∈ V G. Thus, V G is a subspace since it is a non-
empty subset of V that it closed under linear combinations.
Now, simply notice that by de�nition, for any v ∈ V G and g ∈ G, we have
φgv = v. Thus, V G is G-invariant.

2. Let v ∈ V and consider the element x = 1
|G|
∑

h∈G φhv ∈ V . To show that

x ∈ V G, let g ∈ G be arbitrary and let's show that φgx = x. By linearity of
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φg and using the fact that φ is a homomorphism, we get

φgx = φg
1

|G|
∑
h∈G

φhv

=
1

|G|
∑
h∈G

φgφhv

=
1

|G|
∑
h∈G

φghv

Notice that the sum is taken over h ∈ G but the only time it is used is in the
subscript φgh. Since the function h 7→ gh is a bijection from G to G and the
sum is �nite, then this sum is simply a rearrangement of the sum in which we
replace gh by h. Hence,

φgx =
1

|G|
∑
h∈G

φghv

=
1

|G|
∑
h∈G

φhv

= x

Since it holds for all g ∈ G, then x ∈ V G.

3. To do so, let v ∈ V G and recall that by de�nition, φhv = v for all h ∈ G:

1

|G|
∑
h∈G

φhv =
1

|G|
∑
h∈G

v =
1

|G|
|G|v = v

which proves the desired formula.

4. De�ne the operator

P =
1

|G|
∑
h∈G

φh

We already now from part 2. of this question that Im(P ) ⊂ V G. Moreover,
we know from part 3. of this question that any element of V G is in the image
of P since v = Pv for all v ∈ V G. Thus, Im(P ) = V G. It follows that the rank
of P is dimV G.

5. First, since the image of P is V G, then

P 2 = P |V G ◦ P

But we already know that P acts as the identity map on V G. In other words:
P |V G = idV G . Therefore,

P 2 = P |V G ◦ P = idV G ◦ P = P
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6. Let B = {b1, b2, ..., bn} be a basis for V G and extend it to a basis B′ =
{b1, ..., bn, b′1, ..., b′m} of V where n = dimV G and n + m = dimV . Consider
the matrix representation M = [P ]B′ of P in the basis B′. Notice that the
�rst n columns of the matrix are simply the vectors ei ∈ Cn where 1 ≤ i ≤ n
since P acts as the identity on V G. If we write M = (mij)1≤i,j≤n+m, then the
last sentence implies that mii = 1 for all 1 ≤ i ≤ n.
Moreover, notice that Pb′i ∈ V G, hence, its representation in the B′ basis
only involves the vectors {b1, ..., bn}. Again, this translates to mii = 0 for all
n+ 1 ≤ i ≤ n+m.
Therefore, since the trace of a transformation is the trace of any of its matrix
representation, then

Tr(P ) = Tr(M)

=
n+m∑
i=1

mii

=
n∑

i=1

mii +
n+m∑
i=n+1

mii

=
n∑

i=1

1 +
n+m∑
i=n+1

0

= n+ 0

= dimV G

7. Since the trace is linear, then

Tr(P ) = Tr

(
1

|G|
∑
h∈G

φh

)
=

1

|G|
∑
h∈G

Tr(φh)

which is the desired result.

Exercise 3.6

Let φ : G→ GLn(C) be a representation.

1. Show that setting ψg = φg provides a representation ψ : G → GLn(C). It is
called the conjugate representation. Give an example showing that φ and ψ
do not have to be equivalent.

2. Let χ : G → C∗ be a degree 1 representation of G. De�ne a map φχ : G →
GLn(C) by φχ

g = χ(g)φg. Show that φχ is a representation. Give an example
showing that φ and φχ do not have to be equivalent.

Solution

1. To show that the conjugate representation is indeed a representation, we sim-
ply need to show that it is a homomorphism. To do so, let g, h ∈ G and let's
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show that ψgψh = ψgh. Let v ∈ V , then

(ψgψh)(v) = ψg(v)ψh(v)

= φg(v) · φh(v)

= φg(v)φh(v)

= (φgφh)(v)

= (φgh)(v)

= (ψgh)(v)

Since it holds for all v ∈ V , then ψgψh = ψgh. Therefore, ψ is a representation.
An example of φ ̸∼ ψ can be obtained as follows. Take φ : Z → C∗ given by
n 7→ in, then we get ψ : Z → C∗ with n 7→ (−i)n. If we plug-in n = 1, we can
see that φ ̸= ψ. It follows that φ ̸∼ ψ.

2. As for the previous part, we simply need to show that φχ is a homomorphism.
To do so, let g, h ∈ G and v ∈ V , then

(φχ
gφ

χ
h)(v) = φχ

g (v)φ
χ
h(v)

= χ(g)φg(v)χ(h)φh(v)

= χ(g)χ(h)φg(v)φh(v)

= χ(gh)φgh(v)

= φχ
gh(v)

Since it holds for all v ∈ V , then φχ
gφ

χ
h = φχ

gh. Therefore, φ
χ is a representa-

tion.
An example of φ ̸∼ φχ can be obtained as follows. Take φ : Z → C∗ given
by n 7→ in and χ : Z → C∗ given by n 7→ (−i)n, then we get φχ : Z → C∗

with n 7→ 1. If we plug-in n = 1, we can see that φ ̸= ψ. It follows that φ ̸∼ ψ.

Exercise 3.7

Give a bijection between the unitary, degree one representations of Z and elements
of T.

Solution

To make things clear, consider the set URep(Z, 1) which denotes all the unitary
degree one representations of Z. If we make no distinction between equivalent rep-
resentations, then we need to �nd a bijection between R = URep(Z, 1)/ ∼ and T.
Notice that each equivalence class E in R has a unique representative φE : Z → C∗.
Thus, consider the function f : R → T de�ned by f(E) = φE(1). Notice that f is
well de�ned since φE is unique for all E ∈ R.
First, let's show that it is injective. To do so, let E1, E2 ∈ R such that f(E1) =
f(E2), then by de�nition, φE1(1) = φE2(1). Since φE1 and φE2 are homomorphisms,
then for all n ∈ Z:

φE1(n) = [φE1(1)]
n = [φE2(1)]

n = φE2(n)

Since the domains of both φE1 and φE2 is Z, then φE1 = φE2 . Hence, φE1 ∼ φE2 .
This implies that E1 and E2 have a common representative so it follows that E1 =



CHAPTER 3. BASIC DEFINITIONS AND FIRST EXAMPLES 17

E2. Thus, f is injective.
Let's now show that f is surjective. Let eiθ ∈ T and consider the map φ : Z → C∗

de�ned by φ(n) = eiθn. We �rst need to show that φ ∈ R. To do so, notice
that it can easily be shown that φ is a homomorphism. Hence, φ is a degree one
representation of Z that it is unitary, notice that for all α1, α2 ∈ C and n ∈ Z, we
have

⟨φ(n)α1, φ(n)α1⟩ = ⟨eiθnα1, e
iθnα1⟩

= eiθnα1eiθnα2

= eiθne−iθnα1α2

= α1α2

= ⟨α1, α2⟩

Thus, φ is a unitary degree one representation, it follows that φ must be in an
equivalence class E ∈ R. Moreover, φ must be the unique representation in E with
codomain C∗, i.e., φE = φ. Thus,

f(E) = φE(1)

= φ(1)

= eiθ

Thus, f is surjective since it holds for all eiθ ∈ T. Therefore, f is a bijection from
the unitary degree one representations up to equivalence to the set T.

Exercise 3.8

1. Let φ : G → GL3(C) be a representation of a �nite group. Show that φ is
irreducible if and only if there is no common eigenvector for the matrices φg

with g ∈ G.

2. Give an example of a �nite group G and a decomposable representation φ :
G→ GL4(C) such that φg with g ∈ G do not have a common eigenvector.

Solution

1. Let's prove the contrapositive instead: φ is not irreducible if and only if there
is a common eigenvector for the matrices φg with g ∈ G.
( =⇒ ) Suppose that φ is not irreducible, then by Corollary 3.2.5, φ is decom-
posable. Hence, there must be non-trivial G-invariant subspaces V1, V2 ≤ V
such that V = V1 ⊕ V2. Since

3 = dimV = dimV1 ⊕ V2 = dimV1 + dimV2,

then either V1 or V2 has dimension 1. Without loss of generality, suppose that
V1 has dimension 1, then there is a non-zero vector u ∈ C3 such that V1 = Cu.
Since V1 is G-invariant, then for all g ∈ G and v ∈ Cu, we have φgv ∈ Cu. In
particular, if we take v = u, we get that for all g ∈ G, φgu ∈ Cu so φgu = λg
where λg is a complex constant that depends on g. The previous statement
can be restated as follows: for all g ∈ G, the vector u is an eigenvector for φg.
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It follows that φg with g ∈ G have a common eigenvector.
( ⇐= ) Suppose that there is a common eigenvector for the matrices φg with
g ∈ G. We can rephrase the previous sentence by saying that there exists a
non-zero vector u ∈ V such that for all g ∈ G, there is a constant λg ∈ C
satisfying φgu = λgu. Consider the subspace W = Cu, let's show that W is
G-invariant. To do so, let g ∈ G and αu ∈ W , then

φgαu = αφgu = αλgu ∈ W

Thus, since W has dimension 1, then φ has a non-trivial proper G-invariant
subspace. It follows that φ is not irreducible.

2. Consider the representation φ : D4 → GL2(C) described by

φ(rk) =

[
ik 0
0 (−i)k

]
, φ(srk) =

[
0 (−i)k
ik 0

]
We know from Exercise 1 of this chapter that the matrices φg with g ∈ D4

have no common eigenvector. Consider now the representation ψ = φ ⊕ φ.
Suppose that the matrices ψg with g ∈ D4 have a common eigenvector, then
there exists a non-zero vector u ∈ C2×C2 such that for all g ∈ D4, there exists
a constant λg ∈ C such that ψgu = λgu. If we write u as (u1, u2) where both
u1 and u2 are two vectors in C2, then one of u1 and u2 must be non-zero since
u is non-zero. Suppose without loss of generality that u1 is non-zero. Then we
get that for all g ∈ D4, there is a constant λg such that

ψgu = λgu =⇒ (φg ⊕ φg)(u1, u2) = λg(u1, u2)

=⇒ (φgu1, φgu2) = (λgu1, λgu2)

=⇒ φgu1 = λgu1

In other words, there is a non-zero vector u1 ∈ C2 such that for all g ∈ D4 there
is a λg ∈ C satisfying φgu1 = λgu1. But this is a contradiction since it would
imply that the matrices φg with g ∈ D4 have a common eigenvector. Thus,
by contradiction, the matrices ψg with g ∈ D4 have no common eigenvector.
Notice that ψ is equivalent to a representation ψ′ : D4 → GL4(C) so the same
conclusion holds for this new representation.
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